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ABSTRACT
This study evaluated the application of two predictive models, ARIMA and LSTM neural networks, to estimate sweet potato production 
in Mozambique, aiming to provide accurate forecasts to support agricultural planning and food security. Sweet potato is a crucial crop in 
Mozambique, significantly contributing to the food subsistence of much of the rural population. Given the vulnerability of agricultural 
production to climate conditions and other external factors, accurate food production forecasting is vital for mitigating food insecurity in 
the country. The methodology included the use of the ARIMA model to capture linear patterns and historical trends from 1961 to 2009, with 
validation conducted between 2010 and 2020. The LSTM model, on the other hand, was trained with data from 1961 to 2013 and validated 
between 2014 and 2022. This model was chosen for its ability to identify complex and nonlinear patterns, offering greater accuracy in 
agricultural contexts with high variability. Forecasts for the period from 2023 to 2030 were generated using both models, focusing on 
providing insights that could support strategic decision-making in the agricultural sector. The results demonstrated that the LSTM model 
outperformed ARIMA in terms of accuracy, presenting a significantly lower Mean Absolute Percentage Error (MAPE), indicating greater 
effectiveness in predicting sweet potato production. Projections for the 2023–2030 period indicate stable production, with slight annual 
variations but no significant growth. This reflects resilient agriculture, but also highlights the need for strategic interventions to increase 
production and meet growing food demand. In conclusion, the LSTM model proved to be a more effective tool for forecasting agricultural 
production in scenarios of high uncertainty and variability, such as in Mozambique. The stable forecasts provided by this study underscore 
the importance of improving agricultural practices and investing in infrastructure and technologies to ensure that sweet potato production 
contributes sustainably to the country’s food and nutritional security.
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Introduction
Food insecurity is a persistent global challenge affecting millions 
of people, particularly in developing regions such as Sub-
Saharan Africa and South Asia. Agriculture plays a vital role in 

mitigating this issue, especially through the production of staple 
crops like sweet potatoes, which are an important source of food 
and nutrition for many rural populations. However, agricultural 
production, including sweet potatoes, is influenced by various 
factors such as climate variability, resource limitations, and 
traditional farming practices, making production forecasting a 
continuous challenge [1,2].
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Given the growing impact of climate change and the volatility of 
agricultural systems, traditional production forecasting models 
like ARIMA have been widely used to predict agricultural 
time series. These models have the ability to capture linear 
trends in historical data and have been useful in forecasting the 
production of staple crops like sweet potatoes in contexts of 
limited variability [3,4]. However, ARIMA presents significant 
limitations when dealing with nonlinear and complex data, such 
as those associated with climate change and socioeconomic 
impacts in vulnerable regions.

To address these limitations, the use of Artificial Neural Networks 
(ANNs), particularly Long Short-Term Memory (LSTM) models, 
has shown promise. LSTM has the ability to learn and model 
complex, nonlinear patterns over time, making it particularly 
effective in predicting agricultural production variations 
influenced by multiple interconnected factors, such as climate, 
land use, and agricultural management practices [5,6]. Recent 
studies demonstrate that LSTM outperforms traditional time series 
models like ARIMA, especially in contexts of high variability [7].

In Sub-Saharan Africa, where food insecurity is particularly 
severe, sweet potatoes are a key crop. They not only provide 
an affordable source of calories but are also rich in essential 
nutrients like vitamin A, which are crucial for combating 
malnutrition [8,9]. However, sweet potato production in 
countries like Mozambique remains vulnerable to climate 
fluctuations, with drought and heavy rains frequently negatively 
impacting agricultural yields [10].

Accurately forecasting sweet potato production is essential 
for ensuring food and nutritional security in Mozambique, 
where subsistence farming is the primary source of livelihood 
for over 80% of the rural population [11]. The introduction of 
advanced predictive methods, such as LSTM models, offers 
a new perspective on improving the accuracy of production 
forecasts, thereby enabling policymakers and farmers to make 
more informed and effective decisions [12,13].

LSTM models are particularly well-suited to handling the 
complexity of agricultural systems in tropical regions. Their 
ability to capture long-term patterns, even in noisy time series 
data, allows for more accurate forecasts, taking into account 
factors that ARIMA models may not be able to capture. The 
flexibility of LSTM in integrating multiple variables, such 
as temperature, precipitation, and farming practices, offers a 
significant advantage over traditional linear models [14,15].

Furthermore, the integration of climate and socioeconomic 
variables into LSTM forecasting models is crucial for reflecting 
the dynamic realities faced by farmers in Mozambique. 
Agriculture in Mozambique is highly dependent on climatic 
factors, with droughts, floods, and frequent cyclones often 
disrupting agricultural production [16]. Thus, incorporating 
historical climate data and future forecasts into LSTM models 
can help provide a more accurate view of expected sweet potato 
production and other staple crops.

The application of these advanced predictive models is not 
limited to forecasting agricultural production but can also help 

in planning food security policies. More accurate production 
forecasts allow for the implementation of effective strategies 
for resource allocation, such as improved seeds, fertilizers, and 
access to irrigation, helping to mitigate the impacts of adverse 
climatic conditions [17,18].

Moreover, the ability of LSTM models to learn from real-time 
data makes them a valuable tool for adapting forecasts as new 
information becomes available. This is particularly relevant in 
regions like Mozambique, where the impacts of climate change 
are unpredictable, and agricultural policies need to be constantly 
adjusted to respond to variable conditions [19,20]. The flexibility 
of LSTM models can thus provide a competitive edge over static 
models like ARIMA in highly uncertain contexts.

By integrating LSTM with traditional time series models such 
as ARIMA, a balance can be achieved between capturing long-
term trends and seasonal patterns while responding to nonlinear 
variations in the data. Research suggests that combining both 
approaches offers improved predictive accuracy, allowing 
agricultural policies to be adjusted more effectively [4,21]. This 
hybrid approach is especially relevant for the production of 
staple crops like sweet potatoes, which are critical for food and 
nutritional security in Mozambique.

The present research aims to explore the applicability and 
effectiveness of LSTM and ARIMA models in forecasting sweet 
potato production in Mozambique. Through a comparative 
analysis, the study seeks to identify which models provide the 
most accurate forecasts and how these predictions can be used 
to develop agricultural strategies that ensure food and nutritional 
security in the country. The application of these advanced models 
not only contributes to the academic literature but also provides 
a solid foundation for the formulation of public agricultural 
policies in Mozambique.

Literature Review
Global Context of Sweet Potato Production
Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) 
holds a significant position in global agriculture, especially 
in developing countries where it contributes to food security, 
nutrition, and income generation. With its origin believed to be 
in Central and South America, sweet potato has spread across 
the globe, becoming a staple crop in many regions due to its 
adaptability to diverse climates and soil types [22]. This crop 
thrives in tropical and subtropical climates, with production 
concentrated in regions such as Africa, Asia, and parts of 
Latin America. It plays a vital role in addressing food security 
challenges, particularly in areas prone to food shortages and 
malnutrition [23].

The global production of sweet potatoes reached 86 million 
metric tons in 2022, with Africa and Asia contributing the largest 
shares [24]. Africa, particularly Sub-Saharan Africa, accounts 
for approximately 34% of global production, with countries 
like Nigeria, Uganda, and Tanzania being major producers. In 
these regions, sweet potato is a critical food source, providing 
essential calories and micronutrients to millions of people. 
The crop is often regarded as a "food security crop" due to its 
resilience to drought and its ability to grow in poor soils, making 
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it an invaluable asset in areas with unpredictable rainfall and 
challenging growing conditions [25].

Sweet potato's nutritional value further enhances its importance. 
It is rich in carbohydrates, providing a significant source of 
dietary energy, especially in regions where other staple crops 
such as maize or wheat may not thrive. The orange-fleshed 
varieties of sweet potatoes are particularly valued for their 
high beta-carotene content, a precursor to vitamin A, which is 
essential for preventing deficiencies that can lead to blindness 
and immune system deficiencies, especially in children [26]. 
This nutritional advantage has led to increased promotion of 
orange-fleshed sweet potatoes in regions like Sub-Saharan 
Africa, where vitamin A deficiency is prevalent [27].

In addition to its food security role, sweet potato has significant 
potential in the industrial sector. The starch extracted from sweet 
potatoes is used in various food products, as well as in non-food 
industries such as textiles, adhesives, and biofuels [28]. The 
versatility of sweet potato starch makes it a valuable commodity, 
particularly in Asia, where it is processed into products like 
noodles and desserts. The use of sweet potato in bioethanol 
production is also gaining traction, particularly in China, where 
the demand for alternative energy sources is growing [29].

Globally, sweet potato cultivation is expanding, driven by its 
adaptability to different agricultural systems and its potential to 
improve food security in regions facing climate challenges. The 
crop's ability to grow in a wide range of soil types, including 
sandy, loamy, and clay soils, combined with its tolerance to 
drought, makes it suitable for areas with limited resources [30]. 
Furthermore, its relatively short growing cycle—typically 3 to 
4 months—allows for multiple harvests in a year, increasing its 
productivity and profitability for smallholder farmers [31].

However, despite its many advantages, sweet potato production 
faces significant challenges. Pests and diseases, such as the 
sweet potato virus disease (SPVD), caused by the interaction 
between the sweet potato feathery mottle virus (SPFMV) and 
the sweet potato chlorotic stunt virus (SPCSV), pose major 
threats to yield [32]. These diseases can cause substantial crop 
losses, particularly in Sub-Saharan Africa, where limited access 
to improved varieties and disease-resistant cultivars exacerbates 
the problem. Additionally, post-harvest losses due to poor storage 
conditions, mechanical damage, and pest infestations further 
reduce the amount of sweet potatoes available for consumption 
or sale [33].

Efforts to address these challenges include the development 
of disease-resistant sweet potato varieties and improved post-
harvest management techniques. Researchers are working on 
breeding programs to enhance the resistance of sweet potato 
to SPVD and other diseases, while also improving yields and 
nutritional content [34]. These advancements are critical for 
ensuring the sustainability of sweet potato production, especially 
in regions heavily reliant on the crop for food security and 
income generation [35].

Another key area of focus is improving the value chain for sweet 
potato products. In many developing countries, sweet potatoes 
are consumed primarily in their fresh form, limiting their market 

potential. Expanding the processing and value addition of sweet 
potatoes—such as producing sweet potato flour, chips, and other 
processed products—can increase the shelf life of the crop and 
open up new markets, both domestically and internationally 
[36]. This, in turn, can provide smallholder farmers with higher 
returns and reduce post-harvest losses, which are a significant 
issue in the sweet potato sector [37].

Despite these challenges, the future of sweet potato production 
looks promising. With growing recognition of its nutritional 
benefits and its role in sustainable agriculture, governments 
and international organizations are investing in sweet potato 
research and development. Programs promoting the cultivation 
and consumption of orange-fleshed sweet potatoes have been 
particularly successful in addressing vitamin A deficiency in 
vulnerable populations, leading to improvements in public 
health outcomes [23].

As global populations continue to rise and climate change 
impacts agricultural systems, the importance of resilient crops 
like sweet potato will only increase. It is essential that research 
and development efforts continue to focus on improving sweet 
potato productivity, pest and disease resistance, and post-harvest 
management to ensure that this vital crop can meet the growing 
demand for food and nutrition in the years to come [38].

Sweet Potato Production in Mozambique
Sweet potato holds a vital place in Mozambique's agriculture 
and diet, serving as both a staple food and a source of income 
for many rural households. The crop's adaptability to diverse 
climatic conditions and its nutritional value make it indispensable 
in both urban and rural settings [39]. In Mozambique, sweet 
potatoes are cultivated across various provinces, reflecting the 
crop's resilience and significance in the country's food security 
strategy [40].

Mozambique ranks 16th globally and 13th in Africa in sweet 
potato production, with an area harvested of approximately 
83,646 hectares and a total production of 510,238 tons in 2022 
[24]. The provinces of Zambézia and Nampula are among the 
leading producers, benefiting from favorable climatic conditions 
and fertile soils that support sweet potato cultivation [41]. The 
crop's ability to grow in both sandy and clay soils, coupled with 
its tolerance to periods of drought, makes it an ideal choice 
for smallholder farmers who often face unpredictable weather 
patterns [26].

Sweet potato roots are consumed in various forms in Mozambique, 
including boiled, roasted, fried, or processed into flour for making 
porridges, which are a staple in many households [42]. The 
versatility of sweet potatoes in local cuisine not only enhances 
dietary diversity but also provides essential nutrients, contributing 
to improved health outcomes [43]. Despite this, the consumption 
of sweet potato leaves remains underutilized in some regions, 
although they are rich in vitamins A and C, iron, and calcium 
[44]. Promoting the use of sweet potato leaves could significantly 
enhance the nutritional intake of communities, particularly in 
areas with high rates of malnutrition [45].

The commercialization of sweet potatoes in Mozambique varies 
significantly across provinces. According to the Integrated 
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Agricultural Survey of 2020 conducted by the Ministry of 
Agriculture and Rural Development (MADER), there is a 
notable difference in the marketing of orange-fleshed sweet 
potatoes (OFSP) compared to non-orange-fleshed varieties [41]. 
Provinces like Nampula and Tete show higher percentages of 
producers selling OFSP, with 58.6% and 39.4%, respectively, 
which is considerably above the national average of 18.2%. This 
indicates a growing awareness and demand for OFSP, likely 
due to its high beta-carotene content, which is essential for 
combating vitamin A deficiency [27].

Conversely, provinces such as Gaza and Maputo have 
lower commercialization rates for OFSP, at 2.9% and 6.6%, 
respectively [41]. These disparities highlight the need for targeted 
interventions to promote the cultivation and marketing of sweet 
potatoes, especially OFSP, in regions where commercialization 
is low. Enhancing market access and providing education on the 
nutritional benefits of OFSP can stimulate demand and improve 
the livelihoods of smallholder farmers [46].

Despite its importance, sweet potato production in Mozambique 
faces several challenges, particularly post-harvest losses, which 
can range from 20% to 40% of the total production [37]. Factors 
contributing to these losses include mechanical damage during 
harvesting, inadequate post-harvest handling, poor storage 
facilities, and infestation by pests and diseases [47]. The high 
moisture content of sweet potatoes makes them susceptible 
to rapid deterioration, especially under the hot and humid 
conditions prevalent in Mozambique [26].

To address these challenges, implementing improved post-
harvest management practices is crucial. Training farmers on 
proper harvesting techniques can reduce mechanical damage to 
the roots, thereby extending their shelf life [33]. Additionally, 
investing in better storage facilities, such as ventilated 
warehouses and temperature-controlled environments, can 
significantly reduce spoilage and losses due to pests and diseases 
[48]. The adoption of curing techniques, where freshly harvested 
roots are held under specific conditions to heal wounds, can also 
enhance storability [49].

The role of women in sweet potato production and marketing in 
Mozambique is significant but often underrecognized. Women 
are predominantly involved in the cultivation and processing of 
sweet potatoes, yet they face barriers in accessing markets and 
resources [50]. Empowering women through training programs 
and facilitating their access to credit and markets can enhance the 
overall efficiency of the sweet potato value chain and contribute 
to gender equity in the agricultural sector [26].

Sweet potato cultivation also offers opportunities for income 
diversification and poverty reduction among smallholder 
farmers. By expanding into value-added products such as sweet 
potato flour, chips, and snacks, farmers can access new markets 
and increase their earnings [36]. Such diversification requires 
support in terms of training in processing techniques, quality 
control, and marketing strategies to meet consumer demands 
both locally and internationally [51].

The nutritional benefits of sweet potatoes, especially OFSP, are 
particularly relevant in Mozambique, where vitamin A deficiency 

remains a public health concern [39]. Programs promoting 
the cultivation and consumption of OFSP have the potential 
to improve nutritional outcomes, especially among children 
and pregnant women [27]. Integrating nutrition education into 
agricultural extension services can raise awareness about the 
health benefits of OFSP and encourage its adoption among 
farmers and consumers [44].

Research and development efforts are essential to address 
the agronomic challenges facing sweet potato production in 
Mozambique. Developing and disseminating improved varieties 
that are resistant to local pests and diseases, have higher yields, 
and possess desirable market traits can enhance productivity 
[34]. Collaboration between national research institutions, 
international organizations, and farmers can facilitate the 
breeding and adoption of such varieties [35].

Climate change poses an additional challenge to sweet potato 
production, with increased incidences of droughts and floods 
affecting crop yields [38]. Implementing climate-smart 
agricultural practices, such as conservation agriculture and the 
use of drought-tolerant varieties, can help mitigate these impacts 
and build resilience among farming communities [30].

Furthermore, strengthening the sweet potato value chain 
requires improving market infrastructure and access. Enhancing 
rural roads and transportation networks can reduce post-harvest 
losses by facilitating quicker movement of produce from farms 
to markets [40]. Establishing cooperatives and farmer groups 
can also empower producers by providing better bargaining 
power and access to market information [43].

Sweet potato production in Mozambique is a critical component 
of the country's agricultural sector and food security framework. 
Addressing the challenges of post-harvest losses, market access, 
and gender disparities can significantly enhance the benefits 
derived from this crop [37]. With strategic interventions and 
support from government and development partners, sweet 
potato has the potential to contribute even more substantially 
to nutrition, income generation, and sustainable agricultural 
development in Mozambique [39].

Previous Studies on Agricultural Production Modeling and 
Sweet Potato Forecasting
The use of Long Short-Term Memory (LSTM) and Autoregressive 
Integrated Moving Average (ARIMA) models for forecasting 
agricultural yields has garnered significant attention due to 
their capacity to manage temporal variability and the inherent 
complexities of agriculture. ARIMA is particularly renowned for 
its efficiency in analyzing linear and stationary time series data, 
making it a preferred tool for predicting agricultural production 
in crops like rice, maize, and wheat [52]. The model remains 
a robust approach for managing time series data that exhibit 
seasonal patterns and predictable trends [53]. Furthermore, 
ARIMA has been confirmed as useful in forecasting agricultural 
series under stable conditions [54].

However, ARIMA faces limitations when it comes to dealing 
with highly dynamic and nonlinear data. Agriculture, being 
dependent on unpredictable climate factors, requires more 
sophisticated methods to capture complex interactions between 
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variables like temperature, precipitation, and soil conditions. 
In this context, LSTM models have emerged as a superior 
alternative. As a type of recurrent neural network (RNN), LSTM 
excels in processing long-term dependencies, which is crucial 
for predicting agricultural production cycles that are influenced 
by climate variations [55].

LSTM's capability to retain information over extended periods 
allows it to outperform ARIMA by capturing nonlinear 
dependencies in agricultural data. Studies have demonstrated 
the successful application of LSTM in forecasting agricultural 
yields, offering a more flexible approach to managing seasonal 
and climate fluctuations [12]. This is particularly relevant in 
regions where climate variability significantly impacts crop 
yields [56].

Although LSTM is gaining traction, ARIMA remains a valuable 
tool for more predictable and linear time series data. For instance, 
ARIMA was applied to forecast soybean meal production, 
demonstrating its strength in capturing historical trends in 
agricultural time series [4]. Similarly, ARIMA was successfully 
used for maize yield forecasting in Tanzania, showing positive 
results in seasonal series with clear cyclical patterns [57].

When data complexity increases, LSTM provides more robust 
results. LSTM networks are particularly effective for predicting 
yields affected by non-stationary variables and irregular climate 
events. Research by Zareef et al. shows that LSTM outperforms 
traditional methods in predicting yields for crops such as rice 
and soybeans, where the interdependence of climate factors and 
agricultural practices creates dynamics that ARIMA fails to fully 
capture [14].

LSTM also holds an advantage in long-term agricultural 
yield forecasting by integrating historical climate data and 
environmental variables. This is especially useful in scenarios 
involving climate change, where agricultural forecasting 
requires a detailed analysis of interactions between climate and 
production. Research by Weng et al. highlights the importance 
of LSTM in predicting the impacts of climate variations on 
agricultural productivity [58].

Additionally, LSTM’s adaptability to new conditions sets it 
apart from ARIMA. Unlike ARIMA, which relies on stationary 
data and predefined structures, LSTM can learn from new data 
and emerging patterns, making it ideal for agricultural systems 
facing continuous challenges like drought, floods, and pests 
[59]. LSTM’s ability to predict these variables with greater 
precision supports more effective policy-making in agricultural 
management.

Recent studies suggest that combining ARIMA and LSTM 
could offer a more robust approach to agricultural forecasting. 
According to Parvin, integrating ARIMA's strengths in 
analyzing seasonal patterns with LSTM's capacity to handle 
nonlinear and complex dependencies can result in more accurate 
and comprehensive predictions [21]. This hybrid model has been 
explored in several crops, including maize and soybeans, with 
promising results.

The use of hybrid models that combine ARIMA and LSTM 
shows great potential for time series modeling in agriculture. 
Mamadou‑Diéne Diop & Kamdem observe that integrating both 
approaches allows for a better capture of seasonal components 
and long-term dynamics, providing more reliable forecasts in 
complex agricultural systems [60]. This is particularly relevant 
in agricultural regions vulnerable to extreme climatic conditions.

The application of LSTM and ARIMA in agricultural forecasting 
has proven to be a powerful tool for addressing challenges 
related to food security. Research indicates that improving the 
accuracy of production forecasts significantly contributes to 
strategic planning and mitigating the effects of climate change 
on agriculture [4]. Accurate crop yield predictions provide a 
critical advantage in reducing farmers' vulnerability to climate 
shocks and market fluctuations.

As technological advancements continue, the use of LSTM and 
ARIMA in agricultural forecasting reflects the growing need 
for solutions that can manage the complexity and variability 
of agricultural systems. With the integration of new machine 
learning techniques and large datasets, these models are expected 
to play an increasingly central role in agricultural forecasting 
and food security planning [12], [14].

Materials and Methods
Materials
This study focused on analyzing sweet potato production in 
Mozambique, using annual data from 2002 to 2022, covering 61 
observations. The choice of 1961 as the starting point is based on its 
historical and methodological significance, marking the beginning 
of the FAOSTAT statistical series. This starting point ensures a 
consistent and comprehensive analysis of agricultural production 
trends in Mozambique over time, providing valuable insights into 
the evolution of sweet potato production across six decades.

The data analysis was conducted using Python 3.12.5, chosen 
for its robustness and the wide range of specialized libraries 
available, such as Pandas, Numpy, TensorFlow, and Scikit-learn. 
These tools are essential for data manipulation and predictive 
modelling, particularly in the context of time series. To capture 
trends and patterns in sweet potato production, advanced 
models such as LSTM feedback neural networks and ARIMA 
were employed. Python’s widespread use in scientific research 
ensured the precision and reliability of the results obtained.

Data Source
The sweet potato production data was sourced from FAOSTAT, 
maintained by the Food and Agriculture Organization of the United 
Nations (FAO). This secondary database provides extensive 
statistical information on agriculture and food security, serving as 
a crucial resource for academic research and public policy.

Methods
ARIMA Modeling
•	 Model Identification
The ARIMA was conducted using sweet potato production 
data from Mozambique for the period from 1961 to 2009. The 
identification of the appropriate model began with the analysis of 
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the Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF) of the differenced time series. Differentiation 
was applied to make the series stationary by removing long-
term trends. Based on the observed patterns in the ACF and 
PACF, potential ARIMA models were identified by considering 
different combinations of autoregressive (AR), integration (I), 
and moving average (MA) terms.
•	 Parameter Estimation
The parameters of the identified ARIMA models were estimated 
using the maximum likelihood method, adjusting the AR and 
MA terms to best represent the time series. Model selection 
criteria such as the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) were employed to balance 
model accuracy with complexity, ensuring that the chosen model 
offered a good fit without overfitting.
•	 Validation and Evaluation
To validate the accuracy of the ARIMA models, the production 
data from 2010 to 2020 were used for model evaluation. 
Predictive performance was assessed through metrics such as the 
Mean Absolute Percentage Error (MAPE) and the Root Mean 
Square Error (RMSE), which compared the predicted values to 
actual production data, helping to identify the model that best 
captured the time series dynamics.

LSTM Neural Networks
•	 Data Preparation
LSTM (Long Short-Term Memory) modeling was conducted 
using sweet potato production data from 1961 to 2013. Prior 
to training, the data were normalized using the MinMaxScaler 
technique to scale all values between 0 and 1. This normalization 
process was crucial to ensure that the LSTM model could learn 
patterns without being influenced by differences in data scale. 
Time windows of five consecutive years were created to allow 
the model to capture the temporal dependencies within the series.
•	 Model Architecture and Training
The LSTM model was designed with two hidden layers, each 
containing 50 units, followed by a dense layer responsible for 
generating predictions. The Adam optimizer was used with a 
learning rate of 0.01, and the model was trained over 100 epochs. 
During training, the model adjusted its weights to minimize the 
error between predictions and actual values, using the Mean 
Squared Error (MSE) as the loss function.
•	 Evaluation and Validation
The performance of the LSTM model was evaluated using data 
from 2014 to 2022. The model's accuracy was assessed through 
metrics such as MAPE and RMSE to measure how closely 
the model's predictions aligned with actual production data. 
This validation process ensured that the model was capable of 
generalizing and accurately forecasting sweet potato production.
•	 Forecasting for 2023 to 2030
After training and validation, the LSTM model was used to 
forecast sweet potato production for the period from 2023 to 
2030. These forecasts were generated using the Bootstrapping 
technique to estimate confidence intervals, providing a range 
of likely future production outcomes while accounting for the 
uncertainty inherent in agricultural production data.

Selection of the Best Model for Estimating Agricultural 
Production
To identify the most suitable model for forecasting sweet potato 
production in Mozambique, a comparative analysis of the 

ARIMA and LSTM models was conducted using the MAPE 
metric. The model that demonstrated the lowest MAPE was 
selected as the most accurate, making it the preferred choice 
for future projections. This rigorous approach enhances the 
reliability of the forecasts, providing a robust foundation for 
informed decision-making in agricultural planning and food 
security policy development.

Results
Exploratory Analysis of the Sweet Potato Time Series
The statistical analysis of sweet potato production in Mozambique 
over 62 years provides valuable insights into the characteristics 
and variability of this agricultural crop (Table 1). The average 
annual production is 279,355.07 tons, but the median is 
significantly lower at 55,000 tons. This stark difference between 
the mean and median suggests a highly skewed distribution.

A skewness of 1.39 indicates a strong rightward skew, suggesting 
that production in some years was exceptionally high, pulling 
the mean above the more commonly observed values. The mode, 
at 40,000 tons, reflects the most frequent production value, 
highlighting years when output was relatively low compared 
to the mean. The standard deviation of 339,804.05 tons and a 
variance of 115,466,789,235.38 demonstrate a high level of 
variability in annual sweet potato production. This is further 
emphasized by the coefficient of variation of 1.22 (or 122%), 
which indicates substantial fluctuations in production relative to 
the mean, reflecting significant inconsistency over the years.

Extreme production values range from a maximum of 1,468,575 
tons (in 2013) to a minimum of 21,000 tons (in 1966), resulting 
in a range of 1,447,575 tons. This wide range underscores 
the influence of external factors, such as climatic conditions, 
farming practices, and agricultural policies, which greatly impact 
annual production. The kurtosis of 1.55 suggests a leptokurtic 
distribution, characterized by longer tails and a sharper peak than 
a normal distribution. This indicates the presence of outliers, 
with years of exceptionally high production contributing to the 
observed variability.

Table 1: Descriptive Measures of the Annual Sweet Potato 
Production Series

Descriptive Statistics Value
Mean 279355.07
Median 55000.00
Mode 40000.00
Variance 115466789235.38
Standard Deviation 339804.05
Coefficient of variation 1.22
Maximum 1468575
Minimum 21000
Skewness 1.39
Kurtosis 1.55
Range 1447575.00
n 62.00
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Stationarity Test or Unit Root Test of the Sweet Potato Series
Stationarity is crucial for the application of many time series 
models, as it suggests that the statistical properties of the series 
are consistent over time, allowing for more accurate modeling 
and forecasting.

Analysis of the Time Series for Sweet Potato Production in 
Mozambique
The time series graph of sweet potato production in Mozambique, 
from 1961 to 2022, reveals a sharp increase in production in 
recent years, particularly from the late 1990s onwards (Figure 
1). This growth can be attributed to improvements in agricultural 
practices, greater investment in sweet potato cultivation, or a 
rising demand for this crop. Despite the overall increase, the 

series displays significant fluctuations, alternating between 
periods of steady production and sudden growth spurts, which 
may reflect the influence of external factors such as variable 
climatic conditions or changes in agricultural policies.

The differentiated series for sweet potato highlights the annual 
changes in production from 1961 to 2022. This transformation 
was applied to remove long-term trends, allowing for a more 
focused analysis of short-term variations. By eliminating 
the growth trend, differentiation helps in identifying inter-
annual fluctuations, which may be caused by specific events or 
temporary changes in cultivation conditions. This provides a 
clearer view of the dynamics affecting sweet potato production 
on a year-to-year basis.

Figure 1: Time Series Analysis of Sweet Potato Production in Mozambique (1961-2022)

Decomposition of the Time Series of Sweet Potato Production in Mozambique
The time series decomposition highlights the trend, seasonality, and residual components (Figure 2). The overall trend shows 
a noticeable growth, particularly pronounced in the last two decades, which may be linked to technological advancements, 
improvements in agricultural techniques, or incentive policies promoting sweet potato cultivation. The analysis does not reveal 
a clear seasonal pattern, suggesting that sweet potato production does not follow consistent seasonal cycles during the analyzed 
period. The residuals exhibit variability not explained by the trend, indicating the presence of random fluctuations or the influence 
of external factors that were not modeled.

Figure 2: Decomposition of the Time Series of Sweet Potato Production in Mozambique

Autocorrelation Function (ACF) of Sweet Potato Production in Mozambique 
The ACF (Autocorrelation Function) plot of the original sweet potato production series does not exhibit significant peaks at specific 
lags, indicating the absence of strong seasonality in the data (Figure 3). The rapid decline in autocorrelation values suggests that the 
annual sweet potato production does not have a strong long-term dependence on past values, reflecting a lack of cyclical or repetitive 
patterns over time.

After differentiation, the ACF plot shows that autocorrelations decrease rapidly after the first few lags, indicating that the differentiated 
series does not possess significant long-term correlation structures. This suggests that the differentiated series is closer to being 
stationary, which is ideal for predictive models that require stationarity. Stationarity implies that the statistical properties of the 
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series, such as the mean and variance, remain constant over time, facilitating the analysis and prediction of short-term variations in 
sweet potato production.

Figure 3: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of Sweet

Potato Production in Mozambique
Partial Autocorrelation Function (PACF) of Sweet Potato Production in Mozambique
The PACF plot of the original series reveals several peaks in the first lags, indicating the presence of low-order autoregressive 
components (Figure 4). This suggests that past values moderately influence future values, implying that recent observations have a 
significant, yet limited, impact on subsequent sweet potato production values. Such influence is typical of time series with short-term 
dependency patterns.

In the differenced series, the PACF plot still shows peaks in the first lags, confirming the persistence of low-order autoregressive 
components even after removing long-term trends. This means that past values continue to moderately affect future values, allowing 
low-order autoregressive models to effectively capture the underlying dynamics of the time series. This structure facilitates the 
application of models like ARIMA, which can leverage this autocorrelation to provide accurate forecasts based on historical sweet 
potato production data.

Figure 4: Partial Autocorrelation Function (PACF) of Sweet Potato Production in Mozambique

Augmented Dickey-Fuller (ADF) Test for the Sweet Potato 
Series
As shown in Table 2, the ADF test statistic of -0.8791 for the 
original time series indicates that the series is not stationary, 
as the null hypothesis of a unit root cannot be rejected. This 
confirms the presence of a trend in the series, suggesting that its 
statistical properties, such as mean and variance, change over 
time. To make the series stationary and suitable for predictive 
modeling, a differencing transformation would be necessary to 
remove this long-term trend.

After differencing, the p-value of 0.000 in the ADF test indicates 
that the null hypothesis of a unit root is rejected, confirming 
that the differenced series is stationary. This means the series 
now has constant statistical properties over time, making it 
more appropriate for applying forecasting models that require 
stationarity. The stationarity of the differenced series allows for 
more accurate analysis of short-term variations, improving the 
reliability of forecasts and inferences based on the data.

Table 2:  Augmented Dickey-Fuller (ADF) Test for the Sweet 
Potato Series

Test 
Statistic p-Value Lags n

Critical Value
 (1%)  (5%)  (10%)

Orginal Series
-0.8791 0.0478 10 51 -3.5656 -2.9201 -2.5980
Differenced Series
-8.545 0.000 0 61 -3.544 -2.911 -2.593

Estimation with Time Series Models (ARIMA) for Sweet 
Potato Production
Model Identification
Based on the analysis of the ACF and PACF plots of the differenced 
time series of sweet potato production in Mozambique, it 
is possible to identify the most suitable ARIMA models for 
forecasting this series. The ACF plot reveals a gradual decay 
after the initial lags, suggesting the need to include moving 
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average (MA) components in the model. Meanwhile, the PACF 
plot shows a sharper cut-off after the first few lags, indicating 
that autoregressive (AR) terms are also relevant for capturing 
the series' dynamics.

Considering these observations, the ARIMA(1,1,1), 
ARIMA(2,1,1), and ARIMA(1,1,2) models are the most 
appropriate for estimating sweet potato production. The 
ARIMA(1,1,1) model combines one autoregressive term and one 
moving average term, offering a balanced approach to capturing 
both temporal dependencies and random fluctuations. The 
ARIMA(2,1,1) and ARIMA(1,1,2) models introduce additional 
complexity by including more AR or MA terms, potentially 
capturing more intricate variations in the series.

These models are robust and suitable for forecasting sweet 
potato production, providing a solid foundation for estimating 
future trends and supporting decision-making in Mozambique's 
agricultural sector. When choosing among these models, it 
is important to consider the balance between accuracy and 
complexity to ensure that the selected model effectively captures 
the underlying dynamics of the time series.

Parameter Estimation
Table 3 presents the parameter estimates for the ARIMA(1,1,1), 
ARIMA(2,1,1), and ARIMA(1,1,2) models fitted to the time 
series of sweet potato production in Mozambique. The analysis 
of these parameters, considering the t-Stat values and p-values, 
allows for an evaluation of the significance and adequacy of each 
model in capturing the underlying dynamics of the time series.

In the ARIMA(1,1,1) model, the moving average parameter 
MA(1) is highly significant, with a p-value of 0.001, while the 
autoregressive parameter AR(1) is not statistically significant 
(p-value = 0.1231). This result suggests that the moving average 
component plays a crucial role in this model, but the lack of 
significance of the AR component indicates that the model may 
not fully capture all the temporal dependencies present in the 
series.

On the other hand, the ARIMA(2,1,1) model stands out due 
to the statistical significance of both parameters. The second 
autoregressive term AR(2) shows a p-value of 0.0000, and the 
moving average term MA(1) has a p-value of 0.0025. This 
suggests that this model is more robust, effectively combining 
autoregressive and moving average components that capture 
the variations in sweet potato production. However, the first 
autoregressive term AR(1) is not significant (p-value = 0.4947), 
which does not compromise the model's overall effectiveness.

The ARIMA(1,1,2) model, despite effectively capturing random 
fluctuations through the moving average terms MA(1) and 
MA(2), shows that the autoregressive term AR(1) is not significant 
(p-value = 0.3630). This lack of significance may indicate that 
the model has limitations in capturing long-term temporal 
dependencies. Based on this analysis, the ARIMA(2,1,1) model 
is suggested as the most suitable for forecasting sweet potato 
production in Mozambique, followed by the ARIMA(1,1,1) as a 
viable alternative, though slightly less robust.

Table 3: Parameter Estimates for the ARIMA (p,d,q) Model 
Fitted to Sweet Potato Production

Model Parameter Estimates t-Stat P-value
ARIMA 
(1,1,1)

AR(1) 4.241322e-1 1.541634 0.1231

ARIMA 
(1,1,1)

MA(1) -6.927773e-1 -3.270290 0.0010

ARIMA 
(1,1,1)

φ
2 3.099608e+10 3.289735e+22 0.0000

ARIMA 
(2,1,1)

AR(1) -2.889120e-1 -6.827485e-1 0.4947

ARIMA 
(2,1,1)

AR(2) 3.925510e-1 -3.904858 0.0000

ARIMA 
(2,1,1)

MA(1) -5.865350e-1 -3.904858 0.0025

ARIMA 
(2,1,1)

φ
2 3.040932e+10 -3.015761 0.0000

ARIMA 
(1,1,2)

AR(1) 2.484389e-1 3.318517e+22 0.3630

ARIMA 
(1,1,2)

MA(1) -1.140022e-1 -1.049951e-1 0.0000

ARIMA 
(1,1,2)

MA(2) -3.553270e-1 -3.765093 0.0001

ARIMA 
(1,1,2)

φ
2 3.021758e+10 3.296811e+22 0.0000

Diagnostic Test of Residuals for Sweet Potato Production 
Models
The diagnostic test analysis of residuals for the ARIMA(2,1,1) 
and ARIMA(1,1,1) models applied to the time series of sweet 
potato production in Mozambique provides crucial insights into 
the adequacy of these models (Table 4). The Box-Pierce test, 
which assesses the presence of autocorrelation in the residuals, 
indicates that neither model exhibits significant autocorrelation. 
This is evidenced by p-values of 0.6243 for ARIMA(2,1,1) 
and 0.1502 for ARIMA(1,1,1), suggesting that the residuals of 
both models are independent, and that these models effectively 
capture the temporal structure of the data.

Regarding the ARCH test, which checks for heteroscedasticity 
(the variation in residuals over time), both models display 
relatively high p-values (0.6317 for ARIMA(2,1,1) and 0.2548 
for ARIMA(1,1,1)), indicating no significant heteroscedasticity 
in the residuals. This implies that the variability in the residuals 
remains constant over time, which is desirable for model stability. 
However, both models fail the normality test of the residuals, as 
evidenced by the very low p-values (0.0000) in the Shapiro-Wilk 
and Jarque-Bera tests. The violation of the normality assumption 
is not uncommon in time series data, particularly in agricultural 
production, where external factors often influence the data. 
Therefore, despite the violation of the normality assumption, 
the ARIMA(2,1,1) model performs slightly better in capturing 
the temporal structure and ensuring residual stability, making it 
the preferred option for forecasting sweet potato production in 
Mozambique.

Comparison of Model Performance
Table 5 compares the performance of the ARIMA(2,1,1) and 
ARIMA(1,1,1) models in forecasting sweet potato production in 
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Mozambique. The ARIMA(2,1,1) model presents lower values for AIC, BIC, and HQIC, indicating a better balance between model 
complexity and fit to the data, which is crucial for predictive performance. The lower RMSE (155,901.9497) of the ARIMA(2,1,1) 
model suggests a smaller mean squared error, leading to more accurate predictions. Additionally, the MAPE of 19.9597% for 
ARIMA(2,1,1) is lower than that of ARIMA(1,1,1), further reinforcing its superiority in terms of percentage accuracy. Based on 
these metrics, the ARIMA(2,1,1) model is the most suitable for forecasting sweet potato production in Mozambique, offering overall 
better performance compared to ARIMA(1,1,1).

Table 4: Diagnostic Test of Residuals for Sweet Potato Production Models
Model Box-Pierce ARCH Shapiro-WilK Jarque-Bera

Q p-value TR2 p-value W p-value JB p-value
ARIMA(2,1,1) 8.04632 0.6243 7.9707 0.6317 0.6604 0.0000 445.974 0.0000
ARIMA(1,1,1) 14.5299 0.1502 12.4700 0.2548 0.6985 0.0000 296.305 0.0000

Table 5: Comparison of Model Performance for Sweet Potato Production
Model AIC BIC HQIC RMSE MAPE
ARIMA (2,1,1) 1641.1144 1649.5579 1644.4235 155901.9497 19.9597%
ARIMA (1,1,1) 1644.9732 1651.3058 1647.4550 163141.4836 20.4113%

Training and Evaluation of ARIMA Models with Real Data 
from 2010 to 2020
Table 6 presents a comparative analysis of the ARIMA(2,1,1) and 
ARIMA(1,1,1) models applied to the forecast of sweet potato 
production in Mozambique for the period from 2010 to 2020. The 
results show that both models generate estimates that generally 
align with actual data, although significant discrepancies occur in 
certain years. One notable instance is in 2014, when both models 
overestimated sweet potato production, with ARIMA(2,1,1) 
predicting 1,326,787 tons and ARIMA(1,1,1) estimating 1,314,294 
tons, while the actual production was only 502,611 tons.

When analyzing the error metrics, RMSE and MAPE provide 
insight into the models' accuracy. The ARIMA(2,1,1) model had 
an RMSE of 304,531.5 and a MAPE of 31.08%, whereas the 
ARIMA(1,1,1) had a slightly higher RMSE of 307,900 and a 
MAPE of 33.42%. These figures suggest that, while both models 
perform relatively similarly, ARIMA(2,1,1) is marginally better 
in terms of overall precision. Based on the data presented, the 
ARIMA(2,1,1) model is the most suitable for forecasting sweet 
potato production in Mozambique, due to its lower RMSE 
and MAPE, indicating a better forecasting ability and lower 
percentage error compared to ARIMA(1,1,1).

Table 6: Training and Evaluation of ARIMA Models with 
Real Sweet Potato Production Data from 2010 to 2020

Year Actual Dada
Predicted Data

ARIMA(1,1,0) ARIMA(2,1,1)
2010 801706 835115.5 716797.7
2011 890226 708536.7 769015.5
2012 1173404 867589.9 843798.3
2013 1468575 1102497 1065166
2014 502611 1326787 1314294
2015 390407 542777.8 655229.9
2016 552184 779266.7 526281
2017 510054 515589.1 602853.8
2018 487246 457893.8 556474.9
2019 504815 514755.7 525532.6

2020 448633 507208.4 526619.3
RMSE 304531.5 307900
MAPE 31.08% 33.42%

Forecasted Sweet Potato Production in Mozambique from 
2023 to 2030
Table 7 presents the forecasted values for sweet potato production 
in Mozambique for the period from 2023 to 2030. The predicted 
values show relatively stable production over the years, with 
slight variation ranging between approximately 487,000 and 
496,000 tons. The 95% confidence intervals reflect the uncertainty 
associated with these forecasts. In 2023, the confidence interval 
ranges from 368,866.73 to 606,150.61 tons, indicating moderate 
uncertainty in the predictions. In subsequent years, the confidence 
intervals vary, with the lower limit dropping significantly in 2024 
(267,893.71 tons) and the upper limit rising in 2026 (691,918.82 
tons), suggesting increased uncertainty in the production forecasts. 
Throughout the period, the confidence intervals continue to 
exhibit some variation, remaining particularly wide in the more 
distant years, such as in 2030, when the confidence interval ranges 
from 313,932.80 to 659,958.31 tons. This indicates that, although 
the central forecasts suggest stability in sweet potato production, 
there remains considerable uncertainty regarding the actual values 
that may be achieved.

Table 7: Forecasted Sweet Potato Production in Mozambique 
from 2023 to 2030 by the ARIMA Model

Year Forecasted 
Value

Confidence Intervals (95%)
Lower Bound Upper Bound

2023 487508.67 368866.73 606150.61
2024 488241.74 267893.71 608589.78
2025 496952.37 246495.33 647409.41
2026 494148.00 313622.83 691918.82
2027 491538.85 361702.48 644780.18
2028 493393.52 299544.55 686331.60
2029 493881.91 335079.63 622843.45
2030 493012.76 313932.80 659958.31
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Estimation with the LSTM Model for Sweet Potato 
Production
Model Training with LSTM
The training of the LSTM model for the time series of sweet 
potato production in Mozambique was conducted using historical 
data from 1961 to 2013. To enhance model performance, the 
data was initially normalized using the MinMaxScaler, which 
scaled the values to a range between 0 and 1. This normalization 
process is crucial to ensure that the LSTM model can learn the 
patterns in the data without being influenced by large disparities 
in scale. Subsequently, temporal sequences were created using 
blocks of five consecutive years, allowing the model to capture 
the temporal dependencies within the series over time.

The architecture of the LSTM model consisted of two layers 
with 50 units each, followed by a dense layer responsible for 
producing the final predictions. This configuration is particularly 
effective for handling the complexity of time series data, 
capturing patterns that simpler models might overlook. The 
model was trained over 100 epochs, using the Adam optimizer 
with a learning rate of 0.01. During this process, the model’s 
weights were adjusted to minimize the mean squared error 
between the predicted and actual values. Careful monitoring 
of the training process ensured model convergence, resulting 
in a robust tool for forecasting sweet potato production in 
Mozambique over the years.

Model Evaluation
The evaluation of the LSTM model for sweet potato production 
in Mozambique, between 2014 and 2022, demonstrates highly 
satisfactory performance, with an average MAPE of 2.06% 
(Table 8). This figure indicates that the model was able to predict 
production with relatively low percentage error, showcasing its 
ability to capture the trends and variations in production over 
time.

The average RMSE of 9,784 tons further reinforces the accuracy 
of the predictions, indicating that the average absolute deviation 
between the predicted and actual values is quite low, particularly 
in relation to the scale of the analyzed productions. Results 
for specific years, such as 2014 and 2022, with MAPE values 
of 0.93% and 0.75%, respectively, confirm the model’s high 
precision. Although in years like 2015 and 2020 the errors 
were slightly higher, they still remained within acceptable 
limits. Given the consistent performance of the model over 
the evaluated years, the LSTM model proves to be suitable 
for forecasting sweet potato production from 2023 to 2030, 
providing reliable estimates that can be utilized for decision-
making in Mozambique's agricultural sector.

Table 8: LSTM Model Evaluation with Real Sweet Potato 
Production Data from 2017 to 2022

Year Actual Dada
LSTM Model

Predicted 
Data RMSE MAPE

2014 502611 497944.74 4666.26 0.93%
2015 390407 403428.19 13021.19 3.34%
2016 552184 561663.65 9479.87 1.72%
2017 510054 513777.77 3723.77 0.73%

2018 487246 474843.34 12402.66 2.55%
2019 504815 491964.22 12850.78 2.55%
2020 448633 433961.89 14671.11 3.27%
2021 495377 508800.25 13423.25 2.71%
2022 510238 514055.86 3817.86 0.75%
Mean 489062.7533 488937.7678 9784.083 2.06%

Forecasts for 2023 to 2030
The forecast for sweet potato production in Mozambique for the 
period from 2023 to 2030, as estimated by the LSTM model 
combined with the Bootstrapping technique, reveals a trend 
of stability with slight fluctuations over the years (Table 74). 
The predicted values indicate production levels ranging from 
490,000 to 510,000 tons annually, with variations that can be 
attributed to natural fluctuations in agricultural production. The 
95% confidence intervals suggest a relatively narrow margin 
of uncertainty, indicating that while variations are expected, 
production is likely to remain consistently within this range 
throughout the forecast period.

The average annual percentage growth during this period is 
practically negligible (-0.52%), suggesting that sweet potato 
production in Mozambique will remain stable without significant 
variation or substantial growth trends. This behavior aligns 
with the values observed in recent years, where production has 
remained relatively constant. This stability reflects the resilience 
of sweet potato production in the country but also signals the 
need for strategic interventions if there is a goal to increase 
production levels.

Table 9: Forecasted Sweet Potato Production in Mozambique 
from 2023 to 2030 by the LSTM Model and Bootstrapping 
Technique

Year Forecasted 
Value

Confidence Intervals (95%)
Lower Bound Upper Bound

2023 511476.12 443447.55 579504.70
2024 516222.50 462276.16 570168.84
2025 509119.66 474879.88 545359.44
2026 500120.13 435473.08 564767.18
2027 502142.92 443820.01 560465.82
2028 492513.51 423717.12 561309.91
2029 499062.81 460569.25 537556.38
2030 492711.24 455375.06 530047.42

Discussion
The exploratory analysis of sweet potato production in 
Mozambique over 62 years reveals several characteristics that 
highlight the volatility and variability of this crop in the country. 
The average annual production of 279,355.07 tons, in contrast to 
the median of 55,000 tons, suggests a highly skewed distribution, 
with production in a few years being exceptionally high. This 
pattern is evidenced by the high skewness of 1.39, indicating 
that a few years of elevated production raised the average, while 
most years had significantly lower outputs.

The high variability in production is further underscored by 
the coefficient of variation of 122%, indicating that annual 
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production is extremely inconsistent. This behavior is 
common in regions where agriculture is heavily influenced by 
unpredictable external variables such as climate changes and 
market volatility, as discussed by authors like Kar et al. [61]. 
The range of 1,447,575 tons, with a maximum of 1,468,575 tons 
in 2013 and a minimum of 21,000 tons in 1966, highlights the 
impact of specific events that may have caused abrupt increases 
or decreases in production. The kurtosis of 1.55, indicating a 
leptokurtic distribution, confirms the presence of outliers, or 
years of exceptionally high production, likely due to favorable 
climatic conditions or successful agricultural interventions.

The time series analysis of sweet potato production in 
Mozambique from 1961 to 2022 reveals an upward trend in 
production, especially from the late 1990s onwards. This growth 
can be attributed to several factors, including improvements 
in agricultural practices, increased investments in the sector, 
and policies promoting food crop production, as pointed out 
by studies from Sekaran et al. and Pawlak and Kołodziejczak 
[62-63]. However, the series also shows significant fluctuations, 
suggesting the influence of external factors such as adverse 
climatic conditions and changes in government policies. 
Differentiating the time series, which removes long-term trends, 
highlights these year-to-year fluctuations and allows for a more 
focused analysis of short-term variations, as recommended by 
Mahaluça et al. [64].

The decomposition of the time series did not reveal a clear 
seasonal pattern, suggesting that sweet potato production in 
Mozambique does not follow consistent seasonal cycles, a 
result similar to those observed in studies conducted in other 
sub-Saharan African regions Keyser et al. [65]. The residuals 
from the decomposition indicate the presence of variability 
unexplained by the trend, which may be associated with random 
factors or external events such as pests or economic crises, as 
highlighted by authors like Kaphaika et al. [66].

The ACF and PACF plots, which show a rapid drop in 
autocorrelation after the first lags, confirm the absence of 
significant long-term correlation structure. These patterns 
suggest that the differenced series is close to stationarity, which 
is ideal for the application of predictive models such as ARIMA. 
The ADF test also confirms that, after differentiation, the 
series becomes stationary, making it suitable for modeling and 
forecasting, as suggested by Kaur et al. [67].

The analysis of ARIMA models applied to forecasting sweet 
potato production in Mozambique reveals that the ARIMA (2,1,1) 
is the most suitable model, showing better performance in terms 
of predictive accuracy and data fit. The initial identification of 
models, based on the analysis of ACF and PACF plots of the 
differenced time series, indicated that both autoregressive and 
moving average terms are relevant to capturing the dynamics of 
the series.

The ARIMA (2,1,1) stood out due to the statistical significance 
of its parameters and its ability to capture more complex 
variations in sweet potato production. This result is consistent 
with the literature, where more complex ARIMA models are 
often used for agricultural time series [68]. Diagnostic tests 
confirmed that the ARIMA (2,1,1) does not present significant 

issues of autocorrelation or heteroscedasticity in the residuals, 
suggesting that the model captures the temporal structure of the 
data well. However, the violation of normality in the residuals 
is a common limitation in agricultural production data due to 
outliers and external variability [69].

In terms of performance, the ARIMA (2,1,1) had the lowest 
RMSE and MAPE, indicating superior accuracy compared to the 
ARIMA (1,1,1), making it the preferred choice for forecasting 
sweet potato production. These results align with studies that 
highlight the effectiveness of ARIMA models in predicting time 
series with significant variability, such as agricultural production 
in regions vulnerable to external factors [70].

The comparison between the LSTM model and the ARIMA 
(2,1,1) in forecasting sweet potato production in Mozambique 
shows the clear superiority of the LSTM in terms of predictive 
accuracy. The LSTM achieved an average MAPE of 2.06%, while 
the ARIMA (2,1,1) had a significantly higher MAPE of 31.08%. 
This stark difference suggests that the LSTM is more effective 
in capturing the complex dynamics of the time series, especially 
in agricultural contexts characterized by high variability. Studies 
like those by Poongadan & Lineesh confirm the superiority of 
LSTM networks over linear models like ARIMA in non-linear 
and complex time series [71].

The LSTM architecture, consisting of two layers of 50 units 
and data normalization via the MinMaxScaler, was crucial for 
achieving this high accuracy. Using five-year temporal sequences 
allowed the model to capture temporal dependencies that linear 
models like ARIMA cannot replicate. Additionally, the learning 
rate of 0.01 and the Adam optimizer ensured efficient model 
convergence, resulting in an RMSE of 9,784 tons, significantly 
lower than the RMSE of the ARIMA (2,1,1). These technical 
elements were critical to the success of the LSTM in forecasting 
sweet potato production.

The performance of the LSTM in specific years, such as 2014 
and 2022, with MAPEs of 0.93% and 0.75%, respectively, 
demonstrates the robustness of the model, despite slightly larger 
errors in years like 2015 and 2020. Studies also highlight the 
effectiveness of LSTM networks in forecasting time series with 
long-term trends and seasonal fluctuations [72,73], making 
LSTM a valuable tool for agricultural forecasts in Mozambique. 
Given its consistent performance, LSTM is highly recommended 
for future sweet potato production forecasts, providing a solid 
foundation for strategic decision-making in the agricultural 
sector.

The projections for sweet potato production in Mozambique 
from 2023 to 2030 indicate a trend of stability, with minimal 
variations between 490,000 and 510,000 tons annually, as 
forecasted by the LSTM model combined with Bootstrapping. 
This scenario of stability, with an average annual percentage 
growth of -0.52%, reflects an agricultural sector that, although 
resilient, faces challenges in terms of productive expansion.

This projection aligns with studies such as Malec et al., which 
point to limitations in agricultural productivity growth in 
sub-Saharan Africa due to structural factors such as a lack of 
investment in technology and agricultural infrastructure [74]. 
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The absence of significant growth in sweet potato production, 
a crucial crop in Mozambique, suggests that without strategic 
interventions, the country may continue to struggle to increase 
food production sustainably.

In the context of food and nutritional security in Mozambique, 
particularly in rural areas, the stabilization of sweet potato 
production presents both opportunities and challenges. 
While stability may suggest some resilience, it also indicates 
that production may not keep pace with population growth, 
exacerbating food security challenges. FAO highlights that 
population growth without a corresponding increase in 
agricultural production could result in greater food insecurity, 
particularly in regions where agriculture is the main means of 
subsistence [40].

Sweet potato, as a vital subsistence crop, plays a crucial role in 
the diet of rural communities. If production does not increase as 
projected, the SDG 2 goals of eradicating hunger and ensuring 
food security may become unattainable in more vulnerable 
regions. Studies such as Karoliina et al. also emphasize the need 
for agricultural diversification and improved farming practices 
to increase the resilience of food systems in contexts of high 
vulnerability [75].

In Mozambique, this means that, in addition to increasing sweet 
potato production, it is crucial to invest in other crops and 
strengthen the agricultural value chain. Lufeyo et al. argue that 
strengthening distribution and storage infrastructure, coupled 
with farmer training programs, is essential to improving food 
and nutritional security. Without these measures, forecasts of 
stable production may not be sufficient to meet growing food 
needs, especially in rural areas, compromising the country's 
progress toward the SDGs and poverty reduction [76].

Conclusions
The analysis of sweet potato production in Mozambique using 
both ARIMA time series models and Long Short-Term Memory 
(LSTM) neural networks provides valuable insights into the 
dynamics of agricultural production and the suitability of different 
predictive approaches. From a methodological standpoint, the 
LSTM model demonstrated superior performance in forecasting 
production, as it is better equipped to capture nonlinear and 
complex patterns. The significantly lower MAPE achieved by 
LSTM compared to ARIMA underscores the advantage of neural 
networks in contexts marked by high agricultural variability.

However, the stable production projections for 2023 to 2030, 
generated by both LSTM and ARIMA models, highlight the 
absence of significant growth in sweet potato output. This 
finding likely reflects structural limitations in Mozambique's 
agricultural sector, such as a lack of investment in technology 
and modern farming practices. While the models provide stable 
forecasts, the lack of growth suggests that strategic interventions 
are needed to overcome productivity challenges and ensure 
sustainable agricultural expansion.

From a food security perspective, the stabilization of sweet 
potato production presents both opportunities and challenges. 
On the one hand, production resilience is positive, ensuring a 

consistent supply, on the other hand, the absence of growth may 
not be sufficient to meet the demands of a growing population, 
potentially exacerbating food insecurity in rural areas. This 
highlights the need for robust agricultural policies focused on 
improving both productivity and crop diversification.

In conclusion, while the stable forecasts provided by the 
models are encouraging, they should serve as a call to action 
for transforming Mozambique's agricultural sector. Focusing on 
innovation, infrastructure, and supportive policies for farmers 
will be essential to ensure that sweet potato production, along 
with other key crops, not only stabilizes but also grows to 
meet rising demand and contribute to the country’s sustainable 
development goals.
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