

ISSN: 3029-0716

Review Article

# **Journal of Infectious Diseases & Treatments**

# An Exhaustive Update on Eradication of Hepatitis C Virus (HCV) with the Objective of Eradicating Chronic Hepatitis by 2030- A Narrative Review

### Kulvinder Kochar Kaur<sup>1\*</sup>, Gautam Nand Allahbadia<sup>2</sup> and Mandeep Singh<sup>3</sup>

# \*Corresponding author

Kulvinder Kochar Kaur, 1Reproductive endocrinology & Infertility specialist, Scientific Director cum Owner Kulvinder Kaur Centre for Human Reproduction, Punjab, India.

Received: October 24, 2025; Accepted: October 31, 2025; Published: November 12, 2025

#### **ABSTRACT**

Hepatitis C virus (HCV) continues to be an important worldwide health problem. About 50 million people were living with chronic hepatitis C dependent on the World Health Organization report since 2024, aiding substantially to worldwide morbidity and mortality. The invention of and recommendation of variable direct-acting antiviral (DAA) regimens importantly resulted in improvement of HCV therapy, allowing plausibility of greater rates of cure for chronic hepatitis C. Nonetheless, the favourable objective of ultimate HCV eradication continues to be bothersome. Pivotal botherations are inclusive of the disparities in DAA availability across variable areas, little different reaction rates to DAAs over diverse patient populations along with HCV genotypes/subtypes, and the inception of resistance-associated substitutions (RASs), potentially conferring resistance to DAAs.

Thus, periodic revaluation of current HCV information is required. An up-to-date review on HCV further makes it imperative dependent on the found switching in HCV epidemiological tendencies, persistent generation in addition to recommendation of therapeutic approaches, along with alterations in public health policies. Therefore, the present exhaustive review has the objective to incorporate the current information on the epidemiology, pathophysiology, diagnostic strategies, therapy options and strategies for avoidance of HCV, with a specific concentration on the present botherations correlated with RASs in addition to continuing pains in vaccine generation. This review sought to yield healthcare professionals, researchers, along with policymakers the imperative understanding in reference to tackling the HCV load with more efficaciousness. Our objective was to emphasize the propagation made in managing along with avoidance of HCV infection in addition to emphasize the continuous barriers bothering the avoidance of HCV infection. The all-encompassing objective was to coincide with worldwide health aims towards diminishing the load of chronic hepatitis, objectives for its ultimate depletion in the form of a public health botheration by 2030 inclusive of chronic hepatitis by other Hepatitis viruses.

**Keywords:** Hepatitis C Virus (HCV), Direct-Acting Antiviral (DAA), Eradication of Chronic hepatitis

### Introduction

Chronic hepatitis C continues to be an important global health load influencing a considerable number of persons globally. Dependent on the World Health Organization (WHO) detection, there were approximately 50 million people living with chronic hepatitis C by the year 2023 globally worldwide, with a determined 1 million new infections each year. Furthermore, roughly 3.26 million children were influenced by chronic hepatitis C, emphasizing its important load. Subsequent to the first10years of the new millennium, the accessiblity as well as

recommendations of direct acting antivirals (DAAs) delineated a new era in the management of chronic hepatitis C. The accessibility of such oral curative agents portrayed the cessation of greater than 30years of serious scientific research. The DAAs possess the properties of considerable safety in addition to efficacious profiles, resulting in attainement of sustained virologic reactions (SVR)-which portrays the cure-in greater than 90% of persons with chronic hepatitis C [1-12].

The present recommended therapeutic protocols for the treatment of chronic hepatitis C virus (HCV) infection by the Infectious Diseases Society of America (IDSA), along with the American Association for the Study of Liver Diseases (AASLD)—

Citation: Kulvinder Kochar Kaur, Gautam Nand Allahbadia, Mandeep Singh. An Exhaustive Update on Eradication of Hepatitis C Virus (HCV) with the Objective of Eradicating Chronic Hepatitis by 2030- A Narrative Review. J Infect Dise Treat. 2025. 3(4): 1-21. DOI: doi.org/10.61440/JIDT.2025.v3.48

Reproductive endocrinology & Infertility specialist, Scientific Director cum Owner Kulvinder Kaur Centre for Human Reproduction, Punjab, India

<sup>&</sup>lt;sup>2</sup>Scientific Director Ex-Rotunda-A Centre for Human Reproduction, Mumbai, India

<sup>&</sup>lt;sup>3</sup>Consultant Neurologist Swami Satyanand Hospital, Jalandhar-144001, Punjab, India

labelled "the HCV guidance"— implicate combining variable DAAs. Such DAAs possess the capacity of getting classified in the form of NS3 protease hampering agents (PIs, with the drug names having the suffix-previr), NS5A replication complex hampering agents (NS5AIs, with the drug names possessing the suffix-asvir), as well as NS5B polymerase nucleoside (NI), along with non-nucleoside (NNI) hampering agents (with the drug names having the suffix-buvir) [13-16].

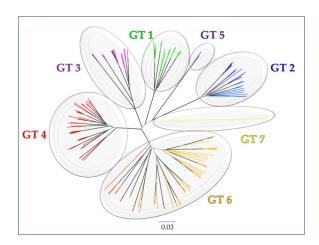
The first generation of DAAs are constituted of (1) NS5AIs inclusive of Daclatasvir, Ledipasvir, Elbasvir, as well as Ombitasvir; (2) PIs inclusive of Simeprevir, Grazoprevir, Asunaprevir, as well as Paritaprevir; in addition to (3) the NNI portrayed by Dasabuvir. The first-generation agents illustrate genotype-particular actions. Compared to them, the second-generation DAAs illustrate pan-genotypic actions with pronounced effectiveness, inclusive of the NS5AIs Pibrentasvir, along with Velpatasvir, the PIs Glecaprevir as well as Voxilaprevir, in addition to the NI Sofosbuvir. In reference to the avoidance of HCV, along with its plausible, important botherations continue. Such botherations arise from the considerable genetic variations of HCV as well as the botheration of evoking a protection conferring immune reaction against the virus, with both factors portraying a main challenge to the generation of an efficacious vaccine. Nonetheless, hope escalated in reference to the prospects of HCV eradication worldwide with the accessiblity in addition to success of DAAs in the form of a curative therapy [16,26–28]. Thereby, the attractive objective of depleting HCV in the form of a public health load is based on the "Treatment as Prevention" (TasP) approach [17-31].

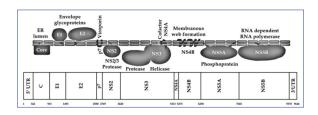
A main challenge to the maintained success of DAAs in the form of a curative methodology for HCV, leave aside eradicating HCV, is the inception of HCV variants resistant to DAAs. The presence of resistance-associated substitutions (RASs), which possess the capacity of generating naturally or get generated at the time of therapy, possesses the probability to diminish the efficacy of therapy, with the probability of transmiting drug-resistant variants forward, particularly amongst high-risk populations [36–38]. Acknowledged the disparities in DAA availability, particularly in low-income scenario, disparities in treatment reactions among variable populations, as well as the escalation of RASs, a canonical reexamination of HCV management is essential. Furthermore, the evolving epidemiological tendencies , continuation of advancements in therapeutic technologies, in addition to problems in avoidance of HCV by vaccination makes it imperative an updated exhaustive review. Therefore, the objective of this exhaustive review is to yield an up-to-date source of knowledge HCV, inclusive of clinical properties, diagnosis, treatment, along with avoidance, with a concentration on tackling the problems presented by DAA resistance, along with vaccine generation work put in [32-38].

#### Origination of HCV Along with Classification

HCV represents a member of the Hepacivirus genus amongst the Flaviviridae family, a classification portrayed via original studies whose leader was Peter Simmonds. A pronounced review performed by Peter Simmonds [43] meticulously evaluated the complex chronicle encompassing the origins as well as evolutionary directions of HCV. The abovementioned review emphasized the botherations to specify the older history of HCV in human populations as well as advocated a precautionary interpreting of the label "origin", specifically in reference to HCV global spread in addition to assortment at the time of the 20th century [43]. The lack of an animal virus intricately associated to HCV, though comprehensive work put in, further makes it complex representing the precise zoonotic source of HCV in humans [39-44].

In case of examination of the genetic heterogeneity of HCV, phylogenetic studies documented that existence of considerable disparities amongst the virus, dividing HCV into a minimal of seven (or even eight) distinct genotypes, portrayed by Arabic numerals [40,45-47] (seeFigure 1).





Figure 1: Courtesy ref no-48-The evolutionary history of HCV genotypes (GTs) based on [46]. The phylogeny was constructed using the neighbor-joining (NJ) method with bootstrap test for evaluation of topology (1000 replicates). Internal branches with bootstrap values ≥ 0.9 are highlighted in black. The evolutionary distances were computed using the TN93 method. The rate variation among sites was modelled with a gamma distribution (shape parameter = 4). The analysis involved 147 NS5B sequences (1495 bases) downloaded from the Los Alamos Hepatitis C sequence and immunology databases (https://hcv. lanl.gov/content/index, accessed on 30 April 2024). Evolutionary analyses were conducted in MEGA6 [49].

Such genetic variations extend amongst genotypes, that resulted in further subclassification of such genotypes into variable subtypes isolated by lowercase English letters. Such genotype as well as subtype classifications are dependent on disparities in nucleotide sequences, with inter-genotypic variations being greater than 30% in addition to intra-genotypic variations varying amongst 20 , along with 25%. Evaluation of the evolutionary rate of HCV documented a germanely quick rate, determined at 1.0–2.0 × 10–3 substitutions per regions per year (s/s/y), commensurate to other RNA viruses. Recognized the considerable comprehensive genetic disparities of HCV identified, it is possible that such variability reinforces the found variations in clinical presentation as well as therapy reactions among persons infected with unique HCV genotypes [48-54].

#### **HCV Genome**

The genomic architecture of HCV instantiates a Flaviviridae member in being a positive-sense, single-stranded RNA genome, comprising a single ORF. Such open reading frames (ORFs) is implicated in the production of a large single polyprotein, about 3000 amino acids in length, as represented in the work by Li et al. in addition to Scheel, along with Rice. The procedure of HCV polyprotein into its working single proteins implicates a cascade of cleavage process modulated by both host cellular proteases as well as virus- particular enzymes, yielding an array of structural in addition to non-structural (NS) proteins pivotal for the viral life cycle Via. The description of the HCV genomic region possesses the capacity of further expositions in the following manner. Placement at the starting of the HCV viral genome is the substantially preserved 5' untranslated regions (UTRs), that nurtures an internal ribosomal entry site (IRES) facilitating the cap- autonomous translation of the viral genome. This region antecedes the coding sequences for structural proteins, inclusive of the core protein (C), the envelope glycoproteins (E1 and E2), along with the ion-channel viroporin (p7). Noticeably, the C protein sustains a preserved sequence, while E1 as well as E2 glycoproteins illustrate s important sequence disparities, an occurrence which accounts for the pressure of immune selection [55-62].

The HCV genome's last segment encodes NS proteins, imperative for viral replication in addition to proceeding of the polyprotein [63]. The NS2 protein, a cysteine protease, promotes the cleavage of NS3 from the NS2-NS3 junction [64]. NS3,in combination with NS4A, comprises a serine protease complex imperative for the cleavage of following NS proteins, controlling the sequential proceeding of the viral proteome [47]. NS4B in particular acts in the form of a membrane backbone for the viral replication complex, whereas NS5A, alongside NS4B, are contributors of production of the endoplasmic reticulum (ER) membranous web, a structure imperative for viral replication dynamics [47, 55]. Finally, NS5B serves in the form of an RNAdependent RNA polymerase (RdRp), generating the viral RNA genome, alongside serving in the form of the central replication factor of HCV [65,66]. Total delineation of the HCV genome in addition to, viral proteins is illustrated in (Figure 2).



**Figure 2:** Courtesy ref no-48-Schematic illustration of HCV genome and polyprotein. The nucleotide positions are in accordance with strain H77 numbering (GenBank accession number: AF009606) based on (Sallam, 2017) [46].

# HCV Pathogenesis, Pathology, along with Immune Reactions The hepatic tropism of HCV is correlated with its selective propensity to infect the hepatocytes in the form of the basic region for gaining entry into the hepatocytes, replication, along with assembly [67]. The basic mechanistic modes of

HCV transmission is isolated in the form of percutaneous, with documented patients of permucosal transmission also [68]. Investigations illustrated that direct inoculation of HCV, either via intravenous injection of virions or intrahepatic introduction of genomic RNA, efficaciously starts HCV infection [56].

Hepatic tropism of HCV is correlated with the predilection expression of particular proteins on hepatocytes acting to promote entry as well as replication of HCV. These are inclusive of the i)low-density lipoprotein receptor (LDL-R) in addition to ii) scavenger receptor class B type I (SR-BI), the liver particularpathways in the liver which endorse HCV virion microRNA miR-122 imperative for HCV replication, along with the distinct lipoprotein production pathways in the liver which endorse HCV virion synthesis. Furthermore, the liver-particular organization as well as dynamic crosstalk amongst viral constituents in addition to greater ubiquitous expressed host proteins inclusive of CD81, claudins, occludin, along with epidermal growth factor receptor further endorse the part of the liver in the form of the elemental region for the HCV life cycle. Whereas, the plausibility for generativee HCV infection in extrahepatic cells continue to be uncharted for total elucidation, there is corroboration in reference to endorsing the determination of HCV replicative intermediates outside the liver, pointing to a minimal corroboration in extrahepatic replication chamber [69-77].

Subsequent to HCV infection, the host defense mechanistic modes, inclusive of the innate as well as adaptive immune reactions, restrict the penetration of circulating HCV particles into hepatocytes [67]. HCV illustrates the capability of adapting in addition to evolve in reactions to the immunological botherations imposed by the host milieu. To circumvent the humoral reactions, intrahepatic cell-to-cell transmission is employed by the virus. Such complicated dynamic crosstalk amongst HCV escape strategies, along with the host immune reactions is the critical properties of the outcome subsequent to HCV infection. Getting insight into the mechanistic modes of HCV intra-liver spread in addition to its crosstalk with host immune defenses is pivotal for generating targeted therapeutic approaches with the objective of regulating viral dissemination in addition to escalating the effectiveness of antiviral therapies [78-82].

The innate immune reactions possessing a further pivotal part in fighting HCV infection, with the virus utilizing variable methodologies in countering such defense [80]. Central to the innate immune reactions against HCV is interferon (IFN) signaling, that comprises early intrahepatic defenses. Activation of IFN-regulatory factor 3 (IRF3) by viral infection stimulates IFN-β production, followed by activating the JAK-STAT signaling pathway, escalating IFN-α generation, as well as triggering the liberation of antiviral cytokines in addition to chemokines. The HCV NS3–NS4A complex interferes with IRF3 activation by cleaving crucial adapter protein Toll/IL-1 receptor domain-containing adaptor stimulating IFN- β (TRIF), integral to the Toll-like receptor 3 signaling pathway. Such disruption stresses the capability of HCV in evading antiviral immunity, an event circumvented by NS3–NS4A protease hampering agents [83-86].

Furthermore, the NS5A protein possesses the capability of interference with IFN signaling through various mechanistic

modes, inclusive of the triggering of interleukin 8 (IL-8) production as well as hampering of the antiviral proteins. The implications of natural killer (NK) in addition to NKT cells, which possess greater enrichment in the liver, is significant for HCV regulation, with their actions hampered by HCV E2 protein crosstalk with CD81, along with affected by HLA as well as killer immunoglobulin-like receptor (KIR) crosstalk. Moreover, robust CD4 in addition to CD8 T-cell reactions are imperative for HCV regulation, despite their failure to result in avoidance of chronicity of HCV infection continue to be uncharted along with requires further investigation. HCV- particular T cells emerge rapidly at the time of acute infection, as well as possess the capability of persistence in persons following HCV infection clearance. In chronic infection, robust CD8 T-cell reactions associate with diminished hepatitis C viral loads [87-92].

Spontaneous clearance of HCV has been correlated with particular major histocompatibility complex (MHC) class I as well as class II molecules. Studies identified a positive correlation in terms of greater possibility of virus clearance with some alleles, inclusive of HLA-B27, HLA-B57, HLA-A11, HLA-A03, as well as HLA-Cw01, in addition to a negative association in terms of greater probability of HCV continuation with HLA-B18, along with HLA-Cw04. Nonetheless, such correlations might differ depending on the circulating HCV genotypes. Although the precise mechanistic modes via which such alleles are capable of affecting HCV clearance remains under investigation, it is posited that shielding alleles might efficaciously present immunogenic in addition to preserved epitopes to T cells, escalating viral clearance. On the other hand, alleles correlate with an enhanced risk of chronic infection might serve in the form of ligands for hampering receptors on NK cells, with endorsing corroboration pointing to an important role for NK receptor polymorphisms in HCV clearance [93-100].

The association of particular MHC class II genes, along with HCV clearance adds further stress on the part of host genetics in the results of HCV infection. Experiments suggest that persons who manage to clear the HCV infection possess a tendency of targeting a wider range of MHC class II epitopes in contrast to persons who generate chronic HCV infection, targeting a fewer number of epitopes, which indicates a plausible disparity in antigen proceeding or epitope presentation [101-103].

Maximum acute HCV infections (55–85%) become chronic in lieu of the virus's efficacious evasion methodologies, with spontaneous clearance being scanty once chronicity is generated [4].Particularly, a huge study by Bulteel et al. documented that spontaneous clearance of HCV took place at an incidence rate of 0.36/100 person-years follow-up. Thereby, the majority of HCV-infected persons propagate to chronic infection although with stronger T-cell reactions [91]. The HCV persistence is promoted by selection for mutations which result in evasion immune reactions whereas result in sustenance of replicative fitness. Such mutations usually takes place in cytotoxic T-lymphocyte (CTL) epitopes as well as are associated with dysfunctional MHC class I presentation or diminished TCR touch [104-108].

The humoral immune reactions further possess a pivotal part in regulating reactions in HCV infections, with neutralizing antibodies mainly targeting the E2 protein. Such antibodies possess the capacity of affecting the viral fitness in addition to sequence evolution at the time of acute infection, pointing their important influence on viral dynamics. Despite the greater divergence of HCV, along with mechanistic modes for instance glycan conferring protection as well as lipid shielding which are contributors of immune evasion, neutralizing antibodies diminished infection risk post-exposure as well as mediate disease propagation [109-113].

The part of virus factors represented in the extreme genetic diversity of HCV does not apparently significantly change the clinical presentations across variable HCV genotypes; nevertheless, genotype- particular reactions to variable treatments in addition to correlation with situations for instance steatosis differ among variable genotypes [24,114,115].

# **Genetic Diversity of HCV Diversity Divergence**

Immediately subsequent to the invention of HCV, it became apparent that unique that there was presence of genetic strains of the virus in variable geographical regions. The HCV nomenclature standards-which the pathfinder pronounced virologist Peter Simmonds, have isolated are seven main genotypes of HCV, which are phylogenetically unique, with further categorizations into subtypes amongst such genotypes [40,45]. The HCV genotypes as well as subtypes revealed variations in their response to treatments. For instance, genotypes 1 in addition to 4 demonstrate less responsiveness to IFNs, whereas the lower proneness of genotype 3 to DAAs continues to be a bothersome problem. Furthermore, HCV genotypes illustrated diversity in clinical results further than their impact on antiviral drug resistance. For instance, genotype 3 is prominently correlated with an escalated occurrence of liver steatosis, which implicates significant fat accrual amongst the liver as well as an escalated propagation to fibrosis along with cirrhosis. On the other hand, subtype 1b has been associated with a greater risk of HCC generation [116-129].

The HCV genomic nucleotide variation among genotypes is greater than 30%, with around 15% genetic variation among subtypes [24,45]. It is important to suggest that such genetic variations are not evenly organized over the HCV genome in lieu of such variations are greater pronounced in the E1, E2, as well as the V3area of NS5A proteins, while the C protein documented lower variability [24,130].

Although the possible phenomenon of recombination in HCV, inter-genotypic recombination is documented rarely; therefore, reconstruction of HCV phylogeny is believed tube dependable for the maximum of sub-genomic HCV regions representing the clustering designs of full genome evaluation [131].

A pronounced difference has been documented in reference to the HCV genetic diversity at the worldwide level. In spite of such variability, genotype 1 is frequent worldwide, with phylodynamic studies showing that the worldwide spread of such genotype occurred amongst the 1940s as well as 1980s. Verification further pointed that dissemination of subtype 1b might have occurred previously in contrast to subtype 1a. Subtype 1a is commonly correlated with injection drug users (IDUs), especially in North America in addition to Northern Europe, whereas subtype 1b is usually correlated with a history of utilization of blood product [132-135].

Local epidemics of HCV usually illustrate dominance of particular subtypes, basically in lieu of developer actions instead of diversity in how easily the virus is transmitted or the routes of transmission. For instance, the HCV epidemic in Egypt is pronouncedly guided by subtype 4a. Compared to that , West Africa illustrated significant variability amongst genotype 2, indicating it probability originated there. In Southeast Asia, genotypes 3 as well as 6 predominate, particularly among IDUs. In the meantime, genotype 5 is greater commonly observed in Southern Africa [136-145].

In reference to the beginning of HCV in humans, recent invention of hepatic viruses in non-primates for instance dogs as well as horses illustrate that they are uniquely separate from HCV. This suggests to a complex in addition to older evolution of HCV in humans, with initiations that probability date back centuries or further millennium of years [43]. Nonetheless, without ancient sequence outcomes, the exact dating of HCV appearance continues to be bothersome in lieu of calibration doubtfulness in molecular clock evaluation [146-150].

#### Clinical and Histopathologic Features of Hepatitis C

Acute HCV infection usually continues sub-clinically, with an important percentage of patients continuing to be asymptomatic. Nonetheless, the initiation of acute hepatitis C is capable of presentation in a subset of infected persons, with symptoms characteristic of acute viral hepatitis, are inclusive of malaise, fatigue, anorexia, nausea, abdominal pain, jaundice, dark urine, as well as pale stools. Noticeably, fulminant hepatitis, a swift as well as robust inimicality of liver function, apparently takes place occasionally in the backdrop of HCV [151-154].

The interval from HCV exposure to the appearance of symptoms or laboratory validated liver damage (incubation period) possesses the capability of differing, varying from two to twenty weeks in addition to canonically present in seven weeks. Frequently, the primary laboratory suggestion of acute HCV infection illustrates escalated quantities of alanine aminotransferase (ALT) in addition to aspartate aminotransferase (AST), pointing to injured hepatocytes [155-157].

Subsequent to HCV infection, viremia is swiftly estimable, escalating to amongst 100,000 in addition to 10 million IU/mL amongst a few weeks. A diminished viral load usually follows, occurring one to two weeks subsequently as well as synergistic with a considerable escalation of ALT in addition to AST quantities. Such design represents the immune system response to HCV infection, which mediates hepatocyte damage, along with, significantly influences the rate of spontaneous viral clearance. Sequentially, greater initial HCV viremic quantities in addition to greater robust forms of acute hepatitis C are correlated with greater probability of spontaneous resolution [158-164].

Spontaneous resolution, of HCV canonically presents amongst six months of infection. A greater probability of viral resolution has been observed in symptomatic persons, females, along with younger cases. Conversely, spontaneous resolution of HCV infection possesses lower probability to be found among those co-infected with HIV, IDUs, or persons of black ethnicity. The isolation of particular alleles intricate to the IL28B gene,

is implicated in encoding interferon-lambda 3 (IFN $\lambda$ 3), has provided significant understanding into the genetic consideration of HCV infection results. Such alleles are further anticipative of spontaneous recovery from acute HCV. Importantly, the organization of such shielding of IL28B genotype (CC genotype in contrast to the CT/TT genotypes) illustrates substantial racial variations, being greater prevalent in Asian populations as well as pronouncedly lesser so in those which possess African ethnicity[165-178].

In the large proportion of persons (60% to 85%) not undergoing spontaneous HCV infection clearance, chronic infection appears in the form of a substantially different situation , possess the characteristics of variable clinical manifestations as well as propagation rates [155,179]. Significant morbidity in addition to mortality canonically stem when the infection advancement takes place to cirrhosis or end-stage liver disease, which might further evolve into HCC [180-182].

Among chronically infected HCV patients, the quantities of HCV RNA in the blood are germanely persistent over time, usually oscillating, along with possess the capability of attaining greater than 1 million IU/mL. Some factors are correlated with greater viral loads, inclusive of HIV co-infection, male sex, older age, as well as escalated body mass index(BMI). On the other hand, persons with concomitant HBV infection or greater advancements of liver disease possess the tendency of illustrating lesser viral burden [183-186].

Chronic HCV infection stimulates a cascade of histopathological alterations in the liver, possess the properties of mainly variable quantities of chronic inflammation along with steatosis. Common periportal lymphocytic infiltrates are observed however do not commensurately anticipate the time course of liver disease propagation. In chronic hepatitis C, a disparity in the generation of important fibrosis is observed where certain persons illustrate marked fibrotic alterations subsequent to continued viral exposure, while others illustrate least actions, the expositions of which remain largely undetermined [187-189].

Fibrosis generation takes place secondary to disequilibrium in extracellular matrix dynamics, with collagen formation overtaking its degradation, starting in the periportal zones. Such fibrosis event might stabilize or advancements takes place to greater structural changes inclusive of the generation of septae that connect nearbylobules. Propagation further than such stage cassatas in cirrhosis, which possess the properties of considerable scarring as well as nodular liver regeneration [190-192].

With the advancements of cirrhosis, generation of complications takes place for instance to portal hypertension, as well as there is an increased risk of HCC in view of neoplastic conversions amongst the hepatic parenchyma. Getting insight regarding this pathophysiological event that cassatas in end-stage liver disease is imperative for timely along with efficacious therapeutic arbitrations to stop or revert the fibrosis events in chronic HCV infection.

The probability for HCC in chronic HCV infection comprises an important risk, making it essential to intense screening protocols

for cirrhosis in addition to HCC [197]. Such proactive strategy through HCV screening is pivotal in view of the canonically asymptomatic propagation of chronic HCV until the patients that attained advancements of stages [197,198].

The part of HCV in the direct stimulation of oncogenic events continue to be under assessment. There is escalating validation that the HCV C protein engages in oncogenic modulation by activating proto-oncogenes along with repressing apoptotic pathways. Nevertheless, it is further possible that the chronic inflammation, that is the landmark of continuation of HCV infection, adequately facilitates oncogenesis, resulting in the generation of HCC [199-205].

Lastly, chronic HCV infection is involved in a plethora of extrahepatic presentations pronouncedly inflammatory in kind [76, 206]. Such presentations further complicate the clinical tackling of HCV, showing the requirement to tackle the wider systemic actions of chronic HCV infection [207].

#### **Diagnosis of HCV**

Infection by HCV need to be taken into account in patients manifesting with unexplained liver aberrations. Acknowledged the germanely frequent prevalence of chronic hepatitis C as well as the commonly asymptomatic kind of the disease, HCV evaluation is mandatory in persons documenting escalated liver transaminases or those with risk factors for HCV attainment. Significantly, the shared kind of risk factors amongst HCV in addition to HIV making it essential to intense screening protocols for such specific group, that is HIV-infected persons. As per that, HCV screening for all persons diagnosed with HIV is recommended in the form of an approach with the objective at early determination as well as treatments of HCV in reference to avoidance of further liver injury in addition to idealization of the patient results [5] management [208-210].

The recent recommendation from the IDSA, the AASLD, along with the U.S. Centers for Disease Control as well as Prevention (CDC) supported ubiquitous HCV screening in reactions to evolving epidemiological tendencies in addition to the accessibility of efficacious treatments [13]. Since March 2020, it is advocated that all adults amongst the ages of 18 to 79 undertake HCV screening [5]. This approach was further extended in April 2020 by the CDC to be inclusive of a one-time screening for all adults ≥aged 18, along with for each pregnancy, other than scenario where the HCV prevalence is under 0.1% [209].

The endorsing of ubiquitous HCV screening reflects a strategic evolution in public health policy, guided by a plethora of factors. The clearcut cost- efficaciousness of widespread screening enterprises has illustrated them in the form of practical as well as essential public health mediations. Furthermore, ubiquitous screening importantly enhances the determination of HCV, which is especially key acknowledged the usually-silent propagation of the infection. The emergency in reference to a universal screening protocol is highlighted by the escalating incidence of HCV, particularly among younger populations, where the disease might otherwise go ignored until attained advancements of stages. The present accessibility of safe in addition to cost-efficacious DAAs guarantees that HCV possesses the capability

of getting treated efficaciously subsequent to determination. Efficacious treatment further aid in stopping the forward transmission of the virus, also diminishing the HCV load via Tap [211-218].

The starting initial diagnostic approach for HCV infection implicates serologic investigation via Enzyme Immunoassays (EIAs), which determines antibodies against HCV C, NS3, NS4, as well as NS5 proteins. Although its considerable specificity in addition to sensitivity, EIAs' outcomes possess the capability of rarely providing false positives [219,220]. Thereby, positive serologic outcomes making it essential to further verification via HCV RNA investigation to detect active infection [219-222].

Serological investigation for HCV is variable, utilizing a range of methodologies from EIA as well as chemiluminescence immunoassay to swift methodologies for instance agglutination along with lateral flow assays [219]. Advanced technologies are inclusive of i)recombinant immunoblot assay (RIBA), ii) electrochemical immunosensors, in addition to iii)nano-metal technologies employing a)gold nanoparticles well as b)quantum dots. Although the methodological advances in HCV screening, diverse issues hamper its widespread utilization, particularly in resource-restricted milieus [219]. Such challenges are inclusive of the continued turnaround times as well as the substantial expenditure correlated with such investigations, that are exacerbated by the bulky nature of the instrumentation in addition to the essentiality for skilled technicians. These constraints have actuated pathfinder in diagnostic approaches that orchestrate precision along with practicality, having objective to diminish both equipment expenditure along with operational complicated nature whereas sustenance of test sensitivity as well as specificity [223-228].

HCV RNA investigation continues to be crucial for cases with escalated clinical doubt, promoted by methodologies for instance) reverse transcriptase-polymerase chain reaction (RT-PCR), ii)transcription-mediated amplification (TMA), iii) reverse transcription loop-mediated isothermal amplification (RT-LAMP), in addition to iv) branched DNA (b DNA) assays. Such methodologies, targeting substantially preserved sites of the HCV genome, are crucial for verification of the chronic infection status along with guiding treatment approaches [229-232].

Genotyping of HCV was critical for altering IFN-dependent therapy, as well as this implicated utilization of reverse hybridization assays that augment particular genomic sites (5'UTR or C) to determine genotype in addition to rarely subtype [ 219,233]. Nonetheless, the maximum dependable approach for HCV genotype determination utilizes genomic sequencing along with phylogenetic evaluation of the E1 or NS5B sites [234]. The part of HCV genotyping subsequent to accesiblity of pan-genotypic DAA regimens continues to be an issue to be evaluated more [115].

Precise staging of HCV- associated liver disease, that historically depended on invasive liver biopsies, is imperative [235]. Although the detailed understanding of liver biopsies, such invasive approach possesses risks as well as drawbacks. The switch towards non-invasive methods for instance i)serum

markers in addition to ii)sonographic elastography is further shaping HCV therapeutic approach. This aids in greater common as well as a lesser invasive monitoring, yielding a clearer evaluation of liver fibrosis in the absence of the limitations correlated with canonical biopsy approaches [235-241].

#### **Treatment of HCV**

The therapeutic approach for HCV infection experienced a significant transformation, particularly with the invention of DAA, with a pronounced switch from IFN-dependent treatments to greater efficacious in addition to tolerable approaches with shorter time course of treatment [22]. Historically, the standard-of-care for HCV management implicated, pegylated IFN along with ribavirin. Such strategy was usually efficacious in attaining an SVR; nevertheless, it possessed complexity due to its prolonged time course as well as usually resulted in substantial inimical sequelae [242-244].

The introduction of DAAs represented a modernizing step in HCV management, with cure rates greater than 95% in addition to defining SVR, specifically undetectable HCV RNA 12 weeks post-treatment (SVR12), in the form of a new clinical landmark rather than 24 weeks. Furthermore, 8-week regimens have illustrated efficaciousness in real-world studies, with a positive influence on treatment compliance as well as diminishing in costs. DAAs offer the escalation of patient tolerability to treatment as well as aid in the adjusment of treatment regimens dependent on persons patient factors for instance i) HCV genotype,ii) stage of liver fibrosis, iii)co-existing medical situations, iv) previous treatment history, in addition to plausible RASs. Although the clinical success of DAAs, a restriction is associated with their escalated expenditure which is a pivotal factor to be taken into account, specifically in low- along with middle-income countries [21, 245-251].

According to history, the efficaciousness of IFN- dependent therapies was impacted by a variety of factors, are inclusive ofi) patient demographics, I) viral properties, as well as iii)genetic markers for instance IL28B polymorphisms [242]. Furthermore, IFN in addition to ribavirin therapies were well- acknowledged for their wide along with robust inimical sequelae profiles. Common IFN inimical sequelae documented in large trials are inclusive of i)fatigue, ii) headache, iii)nausea, iv)insomnia, as well as v)pyrexia, along with greater robust influences for instance i)anemia, ii)neutropenia, along with a variety of iii)psychiatric in addition toiv) immunological responses. Noticeably, ribavirin commonly resulted in hemolytic anemia, a bothersome complication ,usually escalating of essentiality dose adjustments or culmination of treatment [252-254].

Such adverse effects buttress the botherations of the older therapy regimens as well as emphasize the advantages of DAAs, which have lesser inimical sequelae and do not require the extensive monitoring as well as treatments that IFN- dependent therapies did. Thereby, the origination of DAAs transformed the treatment of chronic HCV infection, which represented a significant landmark in the therapy in addition to plausible eradication of the disease in the form of a public health problem. The U.S. Food and Drug Administration (FDA) recommended the first DAAs, telaprevir along with boceprevir, in May 2011 [255-258].

Subsequently recommendations of other DAAs got observed, marking a main therapeutic invention, that represented a new era of hepatitis C therapy that possessed the characteristics of escalated efficacy, tolerability, as well as shorter time course. A timeline of DAAs' generation in addition to recommendation is presented below: 2011: Introduction of boceprevir (Victrelis) along with telaprevir (Incivek), innovatingor the DAA classes with escalated direct antiviral actions against HCV 2013: Recommendations of sofosbuvir (Sovaldi), a milestone in DAA therapy possesses the characteristics of escalated cure rates, diminished inimical sequelae, as well as shorter time course therapy. 2014: The FDA approved combination treatments for instance ledipasvir/sofosbuvir (Harvoni), makingHCV therapy easy by depleting the requirement for interferon in addition to diminishing the time course of treatment [260]. 2016: Establishment of pan-genotypic treatments for instance elbasvir/grazoprevir (Zepatier) as well as sofosbuvir/velpatasvir (Epclusa), possess the capability of treating total HCV genotypes with efficacy [261]. 2017: Recommendations of glecaprevir/ pibrentasvir (Mavyret), escalating the therapy with shorter time course of treatment courses to achieve SVR along with pangenotypic greater efficaciousness [259-262].

Thereby, the introduction of DAA agents was a substantial propagation from the prior therapy methodologies. The DAAs directly target particular steps amongst the HCV replication cycle. Clinical confirmation strongly endorsed the efficaciousness of DAA regimens, with outcomes pointing that greater than 95% of patients treated with DAAs achieve an SVR, that is clinically equivalent with virological cure [263-269].

#### Four Presently Recommended DAA Regimens are as follows

- i). Glecaprevir/Pibrentasvir (Mavyret) Mavyret SVR12 of 99.7% for genotype 1, SVR12 of 91% for genotype 3. SVR12 of 99–100% for genotypes 4, 5, and 6[272,273], with inimical sequelae being Headache and fatigue.
- ii). Sofosbuvir/Velpatasvir (Epclusa) SVR12 of 98.1% for subtype 1a, 99.2% for subtype 1b, 100% for genotypes 2, 4, and 6, and 97.1% for genotype 5 otype 5 [274] SVR12 of 95% for genotype 3 [275336] with inimical sequelae being Headache, fatigue, nasopharyngitis, and nausea.
- iii). Ledipasvir/Sofosbuvir (Harvoni) SVR12 of 95–98.6% for genotype 1 [276, 277337,338] SVR12 of 98.4% for genotype 2 [277338], SVR12 of 98% for genotype 4 [278]] SVR12 of 92.9% for genotype 5 [279340] SVR12 of 95% for genotype 6 [280341] with inimical sequelae being Fatigue, insomnia, headache, and nausea
- iv). Elbasvir/Grazoprevir (Zepatier) SVR12 of 92% for subtype 1a, 99% for subtype 1b, 100% for genotype 4, and 80% for genotype 6 [281] with inimical sequelae beingHeadache, fatigue, and nausea [270-281].

Novelty in therapeutic approaches are further getting evaluated with the idea of expanding the therapeutic approaches for HCV particularly in reference to patients which are bothersome (for instance patients with HCC) the manner exhaustively reviewed by Medina et al. For example, agents such as ezetimibe that target cellular cholesterol, which is critical for viral entry, can offer a novel mechanism to prevent HCV entry into hepatocytes. Moreover, clinical trials incorporating statins with DAAs or IFN

are underway. These t rials aim to enhance the antiviral response [282-284].

#### Avoidance of HCV

Infection with HCV continues to be a bothersome public health issue .The load of HCV make it essential using various approaches for avoidance [1]. Pivotal avoidance approaches in reference to diminishing of load of HCV are inclusive of i) improvement in screening, ii) diminishing inimicality in the circumstances of IDU, iii) avoidance of healthcare-associated infections, iv) as well as the utilization of TasP [285-289].

Ubiquitous HCV screening with concurrent treatment of the detected cases is recommended, taken into account the natural history of chronic hepatitis C where the disease is generally asymptomatic until advancement of liver disease forms [13]. Approvals recommend one-time screening for all persons ≥aged 18 years in addition to routine screening for high-risk populations, inclusive of persons with an IDU history along with persons on long-term hemodialysis [13]. Early diagnosis of HCV infection via widespread screening promotes timely availability of treatment. Furthermore, there is escalating confirmation strongly endorsing the cost- efficaciousness of ubiquitous HCV screening in countries with lesser HCV prevalence as well [290-293].

In reference to diminishing inimicality, needle exchange programs (NEPs),ii) opioid substitution therapy (OST), as well as iii) educational programs have illustrated plausible way to diminish HCV transmission—in addition to other bloodborne viruses—amongst IDUs In healthcare scenario, robust strict compliance to appropriate infection regulation practices is significant for avoidance of HCV transmission, inclusive of appropriate sterilization of medical and dental equipment. Significantly, the execution of TasP apparently is pivotal in reference to diminishing the load of HCV infections. Apart from the drastic improvement in the treatment of chronic HCV, the DAAs triggered endeavors towards its worldwide depletion. The lack of an efficacious HCV vaccine has resulted in the endorsing of the TasP approach. TasP recommended for the widespread in addition to immediate treatment of HCV infections to considerable lesser HCV transmission amongst populations, thereby diminishing the prevalence of hepatitis C [294-299].

Nevertheless, the efficacious application of TasP faces important botherations, specifically regarding the generation of drug resistance. RASs possess the capability of occurring naturally or generate at the time of therapy, presenting concerning hurdles as well as diminishing therapy efficaciousness [17]. The existence of RASs might restrict the customizability of therapy programs in view of treatments corroborated efficaciousness in clinical trials might illustrate diminished efficaciousness in real-world execution due to such resistant strains [300-301].

Furthermore, the disseminating of drug-resistant variants is specifically challenging in high-risk groups, for instance IDUs, who possess greater susceptibility to spread of such variants [302, 303]. Thus, there is a requirement for persistence of surveillance in addition to the generation of novel therapeutic approaches which possess the capability of bypassing HCV resistance mechanistic modes [21].

### **Resistance-Associated Substitutions (RASs)**

In the form of aforementioned, the therapeutic approach for chronic HCV infection has been modernized by the recommendations of DAAs, which present drastically improved cure rates across IFN- dependent treatments over variable HCV genotypes. However, the success narrative of DAAs in the form of a curative for HCV possess the capacity of be debilitated by RASs conferring resistance. This scary result is associated with the greater mutation rate intrinsic to HCV in view of its errorproneness replicase enzyme (RdRp). The RASs possess the capacity of stemming from mutations occurring spontaneously in view of the natural genetic variation of the virus (natural resistance) or be induced under the selective pressure elicited by antiviral therapies (acquired resistance) [301-309]. Apart from the threat of genesis of RASs to DAAs, other factors aid in failure of therapy, inclusive of patient compliance to therapy as well as sub idealization of therapy regimens [36].

Therapies the prevalence of RASs is impacted by both viral genotype in addition to geographic factors [35,310]. In an early exhaustive assessment employing published GenBank data, the worldwide prevalence of resistance-associated variants (RAVs) to DAAs was estimated. The study displayed that an important proportion, 58.7% (854 out of 1455 sequences), fostered at least one dominant resistance variant, with pronounced geographic disparities. Asia illustrated the maximum frequency of RAVs at 74.1%, with subsequent Africa at 71.9%, America at 53.5%, along with Europe at 51.4% [311].

Among the HCV genotypes, genotype 6 revealed the maximum frequency of RAVs at 99%, a pronouncedly greater exhaustive proportion prevalence in contrast to other genotypes. Subsequent to this genotype was 2 at 87.9%, genotype 4 at 85.5%, subtype 1a at 56%, genotype 3 at 50%, as well as subtype 1b at 34.3%. Further evaluation of the organization of RAVs over different classes of DAAs got displayed in thisstudy. It was observed that 40.0% of sequences possessed RAVs associated with NS5A hampering agents, in addition to 29.6% with NS3 hampering agents, emphasizing an important botheration in managing resistance to such treatments. Compared to that, resistance to NS5B NIs along with NI- dependent combinations was pronouncedly lesser, with lower than 4% of sequences illustrating RAVs [311].

Defining the clinical importance of RASs continues to be an important botheration . For instance, RASs isolated in phenotypic assays at the time of cell culture studies with selective pressure by DAAs are not persistenly analogous to those making a debut in clinical settings where failed treatment is manifested. Thereby, not total RASs determined through sequencing directly influence the effectiveness of DAA therapies. Furthermore, the importance of RAVs amongst the HCV quasispecies is a pivotal factor in getting insight regarding resistance dynamics. Variants below a 15% frequency amongst the HCV quasispecies usually evoke least impact on treatment results [32]. Such observation is imperative for clinical practice, due to It guides the threshold of variant determination that need tobe a botheration forclinicians, guiding greater germane approaches to the use of DAAs [312-314].

#### **Botherations of HCV Vaccination**

Although the transforming influence of DAAs on HCV treatment, the want for an avoidance hepatitis C vaccine remains a pivotal public health issue. Whereas DAAs have considerable efficacy, these drugs carry a greater cost prohibitive load as well as face organization botherations that restrict their availability, specifically in low-income scenarios. Additionally, the curative therapies do not confer immunity against future infections, an issue of specific botheration in populations utilizing greater-risk behaviors (for instance IDUs). A vaccine would drastically diminish the incidence of new infections in addition to hamper HCV transmission amongst communities, providing a maintenance along with cost-efficacious approach to attenuate the global HCV epidemic [315-319].

Nevertheless, the generation of an efficacious HCV vaccine is hampered by the greater genetic variation of HCV, which aid in the efficacious escape from immune acknowledgement. This variation complicates the isolation of ubiquitous vaccine targets as well as limits vaccine epitope pattern [320-324].

Favorable vaccine approaches like the utilization of cyclic peptides, which hold plausibility for evoking robust neutralizing antibody reactions, pose hurdles in generation of the administration systems imperative in reference to maximization of their immunogenicity [385]. Furthermore, the lack of strong infection models that precisely simulate human HCV infection presents a significant barrier to assessing vaccine effectiveness [23,325].

Recent advances in HCV vaccine research provided favorable outcomes [323]. For instance, empirical research with DNA in addition to peptide-dependent vaccines in murine models has propagated, inclusive of a pronounced generation implicating a peptide vaccine obtained from the HCV p7 protein. Correspondingly, a DNA-dependent HCV vaccine has been efficacious in evoking exhaustive T cell reactions along with memory, despite it further triggered a non-neutralizing antibody reaction [326,327].

The usefulness of messenger RNA (mRNA) vaccine technology, that gathered forcefulness at the time of the COVID-19 pandemic, delineates a favorable region to probe for HCV avoidance. Nevertheless, important botherations in the backdrop of HCV vaccination continue, for instance the considerable variability of HCV E proteins. Furthermore, the lower incidence of HCV in industrialized countries making performance complex in reference to the clinical trials, that are usually limited to greater -risk sub-populations. However, continuing research pains, inclusive of a pronounced study by Patra et al., emphasizes the plausibility of generating an mRNA vaccine platform in reference to tackling HCV efficaciously [328,329]. However, such exertion provided favorable early-stage vaccine candidates as well as concurrently emphasized the requirement for ongoing research work pains to generate an HCV vaccine, which apparently is a complicated in addition to long path [23].

# Elimination of HCV by 2030

The WHO generated an approach along with the objective of attenuating the worldwide health impact of hepatitis. The WHO exhaustive hepatitis approach targets a drastic diminishing in disease load by 2030, supported ubiquitously by WHO member

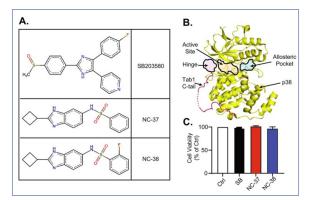
states. The objective of such a strategy is for 90% diminishing in new infections as well as a 65% reduction in mortality via an incorporated strategy that augments preventive services for instance TasP, causing escalation of the accessibility of diagnostic measures, escalates load availability to antiviral treatments, in addition to exacerbates educational struggles [330-332].

Correspondingly, the Global HCV Elimination Coalition has exerted a sophisticated strategy to eradicate HCV by 2030. The transformative influence of DAAs is believed to be imperative to such motivations. Additional strategies are inclusive of the education as well as training of healthcare workers to ensure safe practices in addition to efficacious education of cases, that are imperative for diminishing new viral hepatitis patients, inclusive of HCV cases. Incorporating healthcare measures to address the requirements of marginalized populations, inclusive of IDUs, imprisoned persons, along with economically lesser socioeconomic groups, is further important [333-393].

Taken together, such robust approaches make it essential that every country critically evaluate as well as customize its healthcare parameters to generate efficacious care to guarantee exhaustive surveillance in addition to management of hepatitis C cases [391]. This approach possesses the capacity of reducing e the incidence as well as mortality correlated with hepatitis C along with aiding in the final objective of depleting hepatitis C in the form of a public health botheration by 2030.

# Conclusions, Future Perspectives, along with Drawbacks

In this exhaustive review of HCV, the remarkable advances as well as continuous botherations in diagnosis, management, in addition to avoidance of hepatitis C were emphasized. The generation of DAAs modernized the management of chronic hepatitis C, significantly escalating both treatment efficaciousness along with avoidance capacities through TasP. Nevertheless, the launch of RASs continues to be a pivotal botheration. Such matter highlights the requirements for ongoing surveillance along with the generation of new pan-genotypic treatments that possess the capacity of efficaciously tackling the possibility of resistant variants of HCV.


The lack of efficacious HCV vaccines remains s to hinder pains toward the WHO 2030 objective of HCV elimination. Attaining such optimistic objective would need escalated diagnostic availability to ensure early as well as accurate detection, wider availability in addition to escalated cost-efficaciousness of DAAs, along with enhanced compliance to therapy apart from robust monitoring of RAS influences.

Persistent research as well as pathfinder pains are essential to attenuate the worldwide global burden of HCV. Future research is required to better anticipate in addition to circumvent the evolving dynamics of HCV transmission along with resistance to DAAs. Coordinated global exertion are still needed to attain the final objective of HCV eradication or to a minimal of mitigate its negative influence on public health.

Finally, were cognize variable drawbacks intrinsic in this review despite its exhaustive kind, as follows. First, the selection bias is anticipated particularly in terms of studies included being published in English, with risk of omission of significant observations documented in other languages.2)Second, the tilted availability of outcomes towards greater researched populations as well as areas might underportray the epidemiology particularly in reference to lack of determinates on the HCV prevalence in variable countries globally. 3)Lastly, we must accept pivotal drawbacks in reference to the innovation in addition to replication of this review. Although our objective was to collect along with evaluate the present as well as past literature on HCV, the nature of this review did not implicate the documentation of innovative empirical observations however instead an attempt to incorporate the information present on HCV to emphasize tendency of in addition to lacunae in present HCV research.

Whereas plethora of DAAs possess the capacity of plausibly of clearing HCV infection in maximum persons due to approximately 2.4 million persons fail to respond to the present DAAs / secondary infections or possess complications which influence their plausibility of therapy. Recent studies have illustrated that atypical p38 action is pivotal in reference to HCV replication as well as might possess wider repercussions in controlling other viruses. Although p38 possesses heterogeneous part in controlling viral pathogenesis, the mechanistic modes behind atypical p38 activation by viruses continue to be uncharted regarding getting insight in viral physiology . Royer et al. [337], studied the properties of two atypical p38 allosteric modulators (NC compounds) at the time of HCV infection. They contrasted the actions of substances with the present DAAs for HCV in addition to Herpesvirus, respectively.

Their study illustrated that therapy of either NC compound swiftly mitigated HCV-stimulated p38 activation, blocking HCV protein expression along with HCV RNA replication, whereas both NC substances possessed the capability of successfully mitigating HCV infection, they documented the capability of hampering the beta herpesvirus, Human Cytomegalovirus (HCMV), as well as the alpha herpesvirus, Herpes Simplex Virus-1 (HSV-1). Their study firstly evaluated the plausibility of atypical p38 selective manipulators in reference to blocking viral replication. Whereas the present instance does not possess the capacity of plausibility of clinical viability, idea portrays it being exciting in reference to present treatments embracing / complement present approaches emphasizing the significance of host factors at the time of viral physiology(see Figure 3).



**Figure 3:** Courtesy ref no-337-Compounds that inhibit atypical p38 autophosphorylation. (A) Chemical structures of compounds

SB, NC-37, and NC-38. (B) NC-37 and NC-38 bind to three sites proximal in the ATP binding pocket of p38 $\alpha$ . (C) Huh7.5 cells were treated with either NC-37 (30  $\mu$ M), NC-38 (30  $\mu$ M), or SB (10  $\mu$ M); 2 days post-treatment, cell viability was quantified using Presto Blue. The data (mean±SD, n=3) were analyzed by One-way ANOVA (\*\*\*\*=p<0.0001).

An attractive approach in reference to therapeutic arbitration implicates targeting the NS3 protease, a viral enzyme for replication. Kaoet al, in this study, presented the first computational model particularly fashioned to isolate NS3 protease inhibitory peptides (NS3IPs). Utilizing amino acid constitution (AAC) as well as K-spaced amino acid pair constitution (CKSAAP) properties Kaoet al.[338], produced machine learning classifiers dependent on support vector machine (SVM) in addition to random forest (RF), attaining preciseness of 98.85% along with 97.83%, respectively, corroborated via 5times cross-corroboration as well as autonomous investigations. To embrace the availability of the approach, Kaoet al.[338], executed a web-dependent gadget, iDNS3IP, allowing real-time anticipation of NS3IPs. Additionally, Kaoet al. [338], conducted properties space evaluation with utilization of PCA, t-SNE, as well as LDA dependent on A index descriptors. The resulting visuals illustrated a differentiable clustering amongst NS3IPs in addition to non-hampering peptides, pointing that hampering actions may associate with typical physicochemical designs. This study yields a dependable in addition to anticipable podium to contribute in the invention of therapeutic peptides along with embraces persistent research into peptide- dependent antiviral approaches for drug-resistant HCV. in reference to escalating enhance its adjustability, the iDNS3IP web gadget further incorporates a BLAST-imperative dependent analogy search working, aiding in utilizers to evaluate hampering candidates from both anticipative along with homology-dependent outlook.

Sharma [339], reviewed the propagation from liver biopsy as well as antibody dependent investigations to the current time in the advancements in HCV diagnostic methodologies in detail for instance enzyme immunoassay (EIAs), nucleic acid tests (NATs) in addition to genotyping in escalating preciseness of HCV estimation. Next generation sequencing (NGS) along with point of care testing (POCT) yielded swift as well as cheaper diagnostic solutions. Nevertheless, in the form of attractive diagnostic gadgets, Artificial Intelligence (AI) as well as Machine Learning (ML) possesses the capability of utilization of in just milieu which possess greater resources, while whereas Rapid Diagnostic Tests (RDTs) are of benefit for low as well as middle income countries.

Hepatitis C virus core antigen is a reliable as well as cheap substitute to HCV RT-PCR for diagnosing HCV infection. Regular screening in high-risk groups is for early estimation in addition to avoidance as illustrated Rautela [340].

Viral hepatitis leads to a remarkable risk to public health. Of the five hepatitis viruses, hepatitis B, C, and D virus are specifically of botheration s in view of their high rates of chronic infection as well as significant global disease load. The World Health Organization's Global Health Sector Strategy, introduced in 2016, attempts to eradicate viral hepatitis in the form of a public health

botheration by 2030, with the objective for a 90% reduction in new infections in addition to a 65% reduction in mortality rates. At present, there are variable avoidance along with therapeutic intercessions that possess the capacity of efficaciously stopping the propagation of the disease to an advanced stage.

However, future treatments need to give priority to safety as well as efficaciously treat viral propagation in time. Getting insight of the molecular in addition to immunological mechanistic modes underlying hepatitis viruses' infections would promote the generation of efficacious therapy approaches. Previously we reviewed with the aim of epigenetics treatment of Hepatitis B virus covalently closed circular DNA silencing strategies attaining cure, methodology Hepatitis B Virus (HBV)used for its Lifecycle from nuclear import of Capsid to ccc DNA for Permanent HBV Cure Acquisition / Avoidance of Persistence of ccc DNA, 'targeting dysfunctional mitochondrial metabolism of hepatocytes caused by HBV in the treatment of the Chronic HBV infection, in addition to recent advancements in the treatment of chronic hepatitis B. Additionally, we emphasized on part of lost function of exhausted CD8+ T cells in chronic hepatitis B virus(HBV)/ cHCV infections: enolase as ametabolic checkpoint for variable exhaustion programmed in hepatitis virus- particular CD8+ T cells[341-345]. This review by Liu et al.[346], summarizes the pathogenesis of such viruses, explores avoidance approaches for instance vaccination along with public health measures, along with discusses present as well as emerging treatments. Highlighting ongoing worldwide pains as well as future organizations, this review emphasizes the critical need for maintained international collaboration to attain the eradication of chronic viral hepatitis, by any of such viruses(see Figure 4).

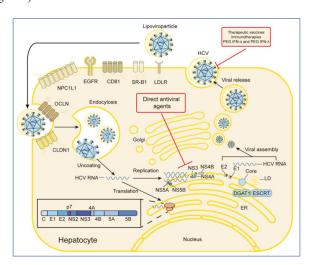



Figure 4:HCV life cycle and drug targets

1. Courtesy ref no-346-HCV particles contain glycoproteins E1 and E2, core proteins, and a single-stranded RNA genome. They exist as pleomorphic lipoviroparticles with varying shapes. HCV entry into host cells involves interactions with several receptors, including LDLR, SR-BI, CD81, claudin-1, occludin, and likely NPC1L1 and EGFR. After attachment, the virus enters the cell through endocytosis, with membrane fusion facilitated by endosomal acidification. Once inside, the viral RNA is released and acts as mRNA in the cytoplasm to produce a polyprotein, which is then processed into ten different viral proteins by the host and viral proteases. The core, E1, and E2 proteins come from the N-terminal region, while the C-terminal region produces seven non-structural proteins. HCV assembly is linked to cellular factors like DGAT1 and ESCRT proteins, with viral particles budding at the ER and acquiring their envelope. The trans-Golgi network-to-endosome pathway plays a role in trafficking and releasing infectious HCV particles. HCV, hepatitis C virus; LDLR, low-density lipoprotein receptor; SR-BI, scavenger receptor class B type I; CD81, cluster of differentiation 81; EGFR, epidermal growth factor receptor; NPC1L1, Niemann-Pick C1-like 1; OCLN, occluding; CLDN1, claudin-1; ER, endoplasmic reticulum; LD, lipid droplet; DGAT1, diacylglycerol acyltransferase-1; ESCRT, endosomal sorting complexes required for transport

#### References

- Brunner N, Bruggmann P. Trends of the Global Hepatitis C Disease Burden: Strategies to Achieve Elimination. J. Prev. Med. Public Health. 2021. 54: 251-258.
- Yang J, Qi JL, Wang XX, Li XH, Jin R, et al. The burden of hepatitis C virus in the world, China, India, and the United States from 1990 to 2019. Front. Public Health. 2023. 11: 1041201.
- 3. Stasi C, Milli C, Voller F, Silvestri C. The Epidemiology of Chronic Hepatitis C: Where We Are Now. Livers. 2024. 4: 172-181.
- 4. World Health Organization (WHO) Hepatitis C-Key Facts. 2024.
- Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, et al. Screening for Hepatitis C Virus Infection in Adolescents and Adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2020. 323: 970-975.
- 6. World Health Organization (WHO) Updated Recommendations on Treatment of Adolescents and Children with Chronic HCV Infection, and HCV Simplified Service Delivery and Diagnostics. 2024.
- 7. Welsch C, Jesudian A, Zeuzem S, Jacobson I. New directacting antiviral agents for the treatment of hepatitis C virus infection and perspectives. Gut. 2012. 61: 36-46.
- 8. European Association for the Study of the Liver EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020. 73: 1170-1218.
- 9. Martinello M, Naggie S, Rockstroh JK, Matthews GV. Direct-Acting Antiviral Therapy for Treatment of Acute and Recent Hepatitis C Virus Infection: A Narrative Review. Clin. Infect. Dis. 2023. 77: 238-244.
- 10. Asselah T, Marcellin P, Schinazi RF. Treatment of hepatitis C virus infection with direct-acting antiviral agents: 100% cure? Liver Int. 2018. 38: 7-13.
- 11. Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, et al. Oral Direct-Acting Agent Therapy for Hepatitis C Virus Infection: A Systematic Review. Ann. Intern. Med. 2017. 166: 637-648.
- Pecoraro V, Banzi R, Cariani E, Chester J, Villa E, et al. New Direct-Acting Antivirals for the Treatment of Patients With Hepatitis C Virus Infection: A Systematic Review of Randomized Controlled Trials. J. Clin. Exp. Hepatol. 2019. 9: 522-538.

- 13. Bhattacharya D, Aronsohn A, Price J, Lo Re V. Hepatitis C Guidance 2023 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin. Infect. Dis. 2023. 319.
- AASLD-IDSA HCV Guidance Panel Hepatitis C Guidance 2018 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin. Infect. Dis. 2018. 67: 1477-1492.
- 15. Moradpour D, Penin F. Hepatitis C virus proteins: From structure to function. Curr. Top. Microbiol. Immunol. 2013. 369: 113-142.
- 16. Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022. 19: 533-550.
- 17. Howe AYM, Rodrigo C, Cunningham EB, Douglas MW, Dietz J, et al. Characteristics of hepatitis C virus resistance in an international cohort after a decade of direct-acting antivirals. JHEP Rep. 2022. 4: 100462.
- 18. Jakobsen JC, Nielsen EE, Feinberg J, Katakam KK, Fobian K, et al. Direct-acting antivirals for chronic hepatitis C. Cochrane Database Syst. Rev. 2017. 9: 12143.
- 19. Geddawy A, Ibrahim YF, Elbahie NM, Ibrahim MA. Direct Acting Anti-hepatitis C Virus Drugs: Clinical Pharmacology and Future Direction. J. Transl. Int. Med. 2017. 5: 8-17.
- Howe AYM, Ceccherini-Silberstein F, Dietz J, Popping S, Grebely J, et al. SHARED: An International Collaboration to Unravel Hepatitis C Resistance. Viruses. 2021. 13: 1580.
- 21. Bartenschlager R, Baumert TF, Bukh J, Houghton M, Lemon SM, et al. Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Res. 2018. 248: 53-62.
- 22. Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J. Hepatol. 2017. 9: 1239-1252.
- 23. Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses. 2021. 13: 1596.
- 24. Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J. Hepatol. 2015. 7: 831-845.
- 25. Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: Many shades of gray. Front. Immunol. 2014. 5: 274.
- Baumert TF, Berg T, Lim JK, Nelson DR. Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology. 2019. 156: 431-445.
- 27. Lombardi A, Mondelli MU. Hepatitis C: Is eradication possible? Liver Int. 2019. 39: 416-426.
- 28. Dhiman RK, Premkumar M. Hepatitis C Virus Elimination by 2030: Conquering Mount Improbable. Clin. Liver Dis. 2020. 16: 254-261.
- 29. Hellard M, Schroeder SE, Pedrana A, Doyle J, Aitken C. The Elimination of Hepatitis C as a Public Health Threat. Cold Spring Harb. Perspect. Med. 2020. 10: 036939.
- 30. Hagan LM, Wolpe PR, Schinazi RF. Treatment as prevention and cure towards global eradication of hepatitis C virus. Trends Microbiol. 2013. 21: 625-633.
- 31. Bernal LA, Soti V. Hepatitis C Virus: Insights Into Its History, Treatment, Challenges, and Future Directions. Cureus. 2023. 15: 43924.

- 32. Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 2016. 64: 486-504.
- 33. Pawlotsky JM. Hepatitis C Virus Resistance to Direct-Acting Antiviral Drugs in Interferon-Free Regimens. Gastroenterology. 2016. 151: 70-86.
- 34. Ridruejo E, Pereson MJ, Flichman DM, Di Lello FA. Hepatitis C virus treatment failure: Clinical utility for testing resistance-associated substitutions. World J. Hepatol. 2021. 13: 1069-1078.
- 35. Esposito I, Trinks J, Soriano V. Hepatitis C virus resistance to the new direct-acting antivirals. Expert Opin. Drug Metab. Toxicol. 2016. 12: 1197-1209.
- Mushtaq S, Hashmi AH, Khan A, Asad Raza Kazmi SM, Manzoor S. Emergence and Persistence of Resistance-Associated Substitutions in HCV GT3 Patients Failing Direct-Acting Antivirals. Front. Pharmacol. 2022. 13: 894460.
- 37. Kyuregyan KK, Kichatova VS, Karlsen AA, Isaeva OV, Solonin SA, et al. Factors Influencing the Prevalence of Resistance-Associated Substitutions in NS5A Protein in Treatment-Naive Patients with Chronic Hepatitis C. Biomedicines. 2020. 8: 80.
- 38. Zeuzem S, Mizokami M, Pianko S, Mangia A, Han KH, et al. NS5A resistance-associated substitutions in patients with genotype 1 hepatitis C virus: Prevalence and effect on treatment outcome. J. Hepatol. 2017. 66: 910-918.
- 39. Bukh J, Miller RH, Purcell RH. Genetic heterogeneity of hepatitis C virus: Quasispecies and genotypes. Semin. Liver Dis. 1995. 15: 41-63.
- 40. Simmonds P, Bukh J, Combet C, Deleage G, Enomoto N, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology. 2005. 42: 962-973.
- 41. Howard CR. Hepatitis C virus: Clades and properties. J. Gastroenterol. Hepatol. 2002. 17: 468-470.
- 42. Hartlage AS, Cullen JM, Kapoor A. The Strange, Expanding World of Animal Hepaciviruses. Annu. Rev. Virol. 2016. 3: 53-75.
- 43. Simmonds P. The origin of hepatitis C virus. Curr. Top. Microbiol. Immunol. 2013. 369: 1-15.
- 44. Pfaender S, Brown RJ, Pietschmann T, Steinmann E. Natural reservoirs for homologs of hepatitis C virus. Emerg. Microbes Infect. 2014. 3: 21.
- 45. Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource. Hepatology. 2014. 59: 318-327.
- 46. Sallam M. Phylogenetic Inference in the Epidemiologic and Evolutionary Investigation of HIV-1, HCV and HBV. Faculty of Medicine, Lund University; Lund, Sweden. 2017.
- 47. Borgia SM, Hedskog C, Parhy B, Hyland RH, Stamm LM, et al. Identification of a Novel Hepatitis C Virus Genotype From Punjab, India: Expanding Classification of Hepatitis C Virus Into 8 Genotypes. J. Infect. Dis. 2018. 218: 1722-1729.
- 48. Sallam M, Khalil R. Contemporary Insights into Hepatitis C Virus: A omprehensive Review .Microorganisms. 2024. 12: 1035.

- 49. Gray RR, Parker J, Lemey P, Salemi M, Katzourakis A, et al. The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evol. Biol. 2011. 11: 131.
- Torres-Puente M, Cuevas JM, Jimenez-Hernandez N, Bracho MA, Garcia-Robles I, et al. Genetic variability in hepatitis C virus and its role in antiviral treatment response. J. Viral Hepat. 2008. 15: 188-199.
- 51. Kohli A, Shaffer A, Sherman A, Kottilil S. Treatment of hepatitis C: A systematic review. JAMA. 2014. 312: 631-640.
- 52. Zein NN. Clinical significance of hepatitis C virus genotypes. Clin. Microbiol. Rev. 2000. 13: 223-235.
- 53. Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses. 2020. 13: 41.
- 54. Adams RL, Pirakitikulr N, Pyle AM. Functional RNA structures throughout the Hepatitis C Virus genome. Curr. Opin. Virol. 2017. 24: 79-86.
- Li Y, Yamane D, Masaki T, Lemon SM. The yin and yang of hepatitis C: Synthesis and decay of hepatitis C virus RNA. Nat. Rev. Microbiol. 2015. 13: 544-558.
- 56. Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med. 2013. 19: 837-849.
- 57. Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S. An overview of HCV molecular biology, replication and immune responses. Virol. 2011. 8: 161.
- 58. Niepmann M, Gerresheim GK. Hepatitis C Virus Translation Regulation. Int. J. Mol. Sci. 2020. 21: 2328.
- 59. Shimizu YK, Hijikata M, Iwamoto A, Alter HJ, Purcell RH, et al. Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses. J. Virol. 1994. 68: 1494-1500.
- 60. Prentoe J, Bukh J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front. Immunol. 2018. 9: 2146.
- 61. Lapa D, Garbuglia AR, Capobianchi MR, Del Porto P. Hepatitis C Virus Genetic Variability, Human Immune Response, and Genome Polymorphisms: Which Is the Interplay? Cells. 2019. 8: 305.
- 62. Dubuisson J. Hepatitis C virus proteins. World J. Gastroenterol. 2007.13: 2406-2415.
- 63. Boukadida C, Fritz M, Blumen B, Fogeron ML, Penin F, et al. NS2 proteases from hepatitis C virus and related hepaciviruses share composite active sites and previously unrecognized intrinsic proteolytic activities. PLoS Pathog. 2018. 14: 1006863.
- 64. Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012. 8: 1003056.
- 65. Ranjith-Kumar CT, Kao CC. Biochemical Activities of the HCV NS5B RNA-Dependent RNA Polymerase. In: Tan S.L., editor. Hepatitis C Viruses: Genomes and Molecular Biology. Horizon Bioscience; Norfolk, UK. 2006.
- 66. Sesmero E, Thorpe IF. Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics. Viruses. 2015. 7: 3974-3994.

- 67. Park SJ, Hahn YS. Hepatocytes infected with hepatitis C virus hepatitis C virus change immunological features in the liver microenvironment. Clin. Mol. Hepatol. 2023. 29: 65-76.
- 68. Centers for Disease Control and Prevention Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV-related chronic disease. MMWR Recomm. Rep. 1998. 47: 1-39
- 69. Sidorkiewicz M. Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites. 2021. 11: 273.
- Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J. Gastroenterol. 2021. 27: 4555-4581.
- Fukuhara T, Matsuura Y. Role of miR-122 and lipid metabolism in HCV infection. J. Gastroenterol. 2013. 48: 169-176.
- 72. Fénéant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses. 2014. 6: 535-572.
- 73. Mailly L, Baumert TF. Hepatitis C virus infection and tight junction proteins: The ties that bind. Biochim. Biophys. Acta Biomembr. 2020. 1862: 183296.
- 74. Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, et al. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS ONE. 2017. 12: 0181683.
- 75. Desombere I, Van Houtte F, Farhoudi A, Verhoye L, Buysschaert C, et al. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front. Immunol. 2021. 12: 775098.
- 76. Cacoub P, Comarmond C, Domont F, Savey L, Desbois AC, et al. Extrahepatic manifestations of chronic hepatitis C virus infection. Ther. Adv. Infect. Dis. 2016. 3: 3-14.
- 77. Crovatto M, Pozzato G, Zorat F, Pussini E, Nascimben F, et al. Peripheral blood neutrophils from hepatitis C virus-infected patients are replication sites of the virus. Haematologica. 2000. 85: 356-361.
- 78. Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host-Virus Interaction and Mechanisms of Viral Persistence. Cells. 2019. 8: 376.
- 79. Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int. J. Mol. Sci. 2020. 21: 5644.
- 80. Patra T, Ray RB, Ray R. Strategies to Circumvent Host Innate Immune Response by Hepatitis C Virus. Cells. 2019. 8: 274.
- 81. Gokhale NS, Vazquez C, Horner SM. Hepatitis C Virus. Strategies to Evade Antiviral Responses. Future Virol. 2014. 9: 1061-1075.
- 82. Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol. Rev. 2012. 36: 663-683.
- 83. Schwerk J, Negash A, Savan R, Gale M. Innate Immunity in Hepatitis C Virus Infection. Cold Spring Harb. Perspect. Med. 2021. 11: 036988.
- 84. Huang M, Jiang JD, Peng Z. Recent advances in the anti-HCV mechanisms of interferon. Acta Pharm. Sin. B. 2014. 4: 241-247.
- 85. Kaukinen P, Sillanpää M, Kotenko S, Lin R, Hiscott J, et al. Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression. Virol. J. 2006. 3: 66.

- 86. Ferreira AR, Ramos B, Nunes A, Ribeiro D. Hepatitis C Virus: Evading the Intracellular Innate Immunity. J. Clin. Med. 2020. 9: 790.
- 87. Polyak SJ, Khabar KS, Paschal DM, Ezelle HJ, Duverlie G, et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferoninduced antiviral response. J. Virol. 2001. 75: 6095-6106.
- 88. Rosen HR, Golden-Mason L. Control of HCV Infection by Natural Killer Cells and Macrophages. Cold Spring Harb. Perspect. Med. 2020. 10: 037101.
- 89. Crotta S, Stilla A, Wack A, D'Andrea A, Nuti S, et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 2002. 195: 35-41.
- 90. Burke KP, Cox AL. Hepatitis C virus evasion of adaptive immune responses: A model for viral persistence. Immunol. Res. 2010. 47: 216-227.
- 91. Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses. 2018. 10: 645.
- 92. Lauer GM, Ouchi K, Chung RT, Nguyen TN, Day CL, et al. Comprehensive analysis of CD8+-T-cell responses against hepatitis C virus reveals multiple unpredicted specificities. J. Virol. 2002. 76: 6104-6113.
- 93. Ocal S, Selcuk H, Korkmaz M, Altun R, Yildirim AE, et al. Effect of HLA on hepatitis C virus clearance and persistence in anti-HCV-positive end-stage renal disease patients. Saudi J. Gastroenterol. 2014. 20: 175-181.
- 94. Kim AY, Kuntzen T, Timm J, Nolan BE, Baca MA, et al. Spontaneous control of HCV is associated with expression of HLA-B 57 and preservation of targeted epitopes. Gastroenterology. 2011. 140: 686-696.
- 95. Fitzmaurice K, Petrovic D, Ramamurthy N, Simmons R, Merani S, et al. Molecular footprints reveal the impact of the protective HLA-A\*03 allele in hepatitis C virus infection. Gut. 2011. 60: 1563-1571.
- 96. Neumann-Haefelin C, Oniangue-Ndza C, Kuntzen T, Schmidt J, Nitschke K, et al. Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology. 2011. 54: 1157-1166.
- 97. Thio CL, Gao X, Goedert JJ, Vlahov D, Nelson KE, et al. HLA-Cw\*04 and hepatitis C virus persistence. J. Virol. 2002. 76: 4792-4797.
- 98. Kuniholm MH, Kovacs A, Gao X, Xue X, Marti D, et al. Specific human leukocyte antigen class I and II alleles associated with hepatitis C virus viremia. Hepatology. 2010. 51: 1514-1522.
- 99. Bengsch B, Thimme R, Blum HE. Role of host genetic factors in the outcome of hepatitis C virus infection. Viruses. 2009. 1: 104-125.
- 100.Rao X, Hoof I, Van Baarle D, Keşmir C, Textor J. HLA Preferences for Conserved Epitopes: A Potential Mechanism for Hepatitis C Clearance. Front. Immunol. 2015. 6: 552.
- 101.Mangia A, Gentile R, Cascavilla I, Margaglione M, Villani MR, et al. HLA class II favors clearance of HCV infection and progression of the chronic liver damage. J. Hepatol. 1999. 30: 984-989.
- 102.Hong X, Yu RB, Sun NX, Wang B, Xu YC, et al. Human leukocyte antigen class II alleles and spontaneous clearance

- of hepatitis C virus infection: A meta-analysis. World J. Gastroenterol. 2005. 11: 7302-7307.
- 103. Day CL, Lauer GM, Robbins GK, McGovern B, Wurcel AG, et al. Broad specificity of virus-specific CD4+ T-helper-cell responses in resolved hepatitis C virus infection. J. Virol. 2002. 76: 12584-12595.
- 104.Maheshwari A, Ray S, Thuluvath PJ, Acute hepatitis C. Lancet. 2008. 372: 321-332.
- 105.Bulteel N, Partha Sarathy P, Forrest E, Stanley AJ, Innes H, et al. Factors associated with spontaneous clearance of chronic hepatitis C virus infection. J. Hepatol. 2016. 65: 266-272.
- 106.Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity 2014. 40: 13-24.
- 107. Quarleri JF. Oubina JR. Hepatitis C virus strategies to evade the specific-T cell response: A possible mission favoring it persistence. Ann. Hepatol. 2016. 15: 17-26.
- 108. Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, et al. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J. Gastroenterol. 2010. 16: 1953-1969.
- 109. Cashman SB, Marsden BD, Dustin LB. The Humoral Immune Response to HCV: Understanding is Key to Vaccine Development. Front. Immunol. 2014. 5: 550.
- 110. Kuntzen T, Timm J, Berical A, Lewis-Ximenez LL, Jones A, et al. Viral sequence evolution in acute hepatitis C virus infection. J. Virol. 2007. 81: 11658-11668.
- 111. Nishio A, Hasan S, Park H, Park N, Salas JH, et al. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat. Commun. 2022. 13: 5446. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat. Commun. 2022. 13: 5446.
- 112. Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front. Immunol. 2018. 9: 910.
- 113. Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines. 2017. 5: 24
- 114. Davigdor WMH, Budzinska MA, Lee M, Lam R, Kench J, et al. Virus Genotype-Dependent Transcriptional Alterations in Lipid Metabolism and Inflammation Pathways in the Hepatitis C Virus-infected Liver. Sci. Rep. 2019. 9: 10596.
- 115. Keikha M, Eslami M, Yousefi B, Ali-Hassanzadeh M, Kamali A, et al. HCV genotypes and their determinative role in hepatitis C treatment. Virus disease. 2020. 31: 235-240.
- 116. Simmonds P, Holmes EC, Cha TA, Chan SW, McOmish F, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J. Gen. Virol. 1993. 74: 2391-2399.
- 117. Simmonds P, Smith DB, McOmish F, Yap PL, Kolberg J, et al. Identification of genotypes of hepatitis Cvirus by sequence comparisons in the core, E1 and NS-5 regions. J. Gen. Virol. 1994. 75: 1053-1061.
- 118.Mellor J, Holmes EC, Jarvis LM, Yap PL, Simmonds P. Investigation of the pattern of hepatitis C virus sequence diversity indifferent geographical regions: Implications for virus classification. The International HCV Collaborative Study Group. J. Gen. Virol. 1995. 76: 2493-2507.

- 119. Kuiken C, Simmonds P. Nomenclature and numbering of the hepatitis C virus. Methods Mol. Biol. 2009. 510: 33-53.
- 120. Poveda E, Wyles DL, Mena Á, Pedreira JD, Castro-Iglesias Á, et al. Update on hepatitis C virus resistance todirect-acting antiviral agents. Antivir. Res. 2014. 108: 181-191.
- 121.Zeuzem S, Berg T, Moeller B, Hinrichsen H, Mauss S, et al. Expert opinion on the treatment of patients with chronic hepatitis C. J. Viral Hepat. 2009. 16: 75-90.
- 122.El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: An overview. World J. Gastroenterol. 2014. 20: 7555-7569.
- 123.Bochud PY, Cai T, Overbeck K, Bochud M, Dufour JF, et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J. Hepatol. 2009. 51: 655-666.
- 124. Chan A, Patel K, Naggie S. Genotype 3 Infection: The Last Stand of Hepatitis C Virus. Drugs. 2017. 77: 131-144.
- 125.Kanwal F, Kramer JR, Ilyas J, Duan Z, El-Serag HB. HCV genotype 3 is associated with an increased risk of cirrhosis andhepatocellular cancer in a national sample of U.S. Veterans with HCV. Hepatology. 2014. 60: 98-105.
- 126. Sharma P, Balan V, Hernandez J, Rosati M, Williams J, et al. Hepatic Steatosis in Hepatitis C Virus Genotype 3 Infection: Does It Correlate with Body Mass Index, Fibrosis, and HCV Risk Factors? Dig. Dis. Sci. 2004. 49: 25-29.
- 127.Raimondi S, Bruno S, Mondelli MU, Maisonneuve P. Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development: A meta-analysis. J. Hepatol. 2009. 50: 1142–1154.
- 128.Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, et al. Hepatitis C virus genotype 1b as a major risk factorassociated with hepatocellular carcinoma in patients with cirrhosis: A seventeen-year prospective cohort study. Hepatology. 2007. 46: 1350-1356.
- 129. Cuypers L, Li G, Libin P, Piampongsant S, Vandamme AM, et al. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance. Viruses. 2015. 7: 5018-5039.
- 130.González-Candelas F, López-Labrador FX, Bracho MA. Recombination in hepatitis C virus. Viruses. 2011. 3: 2006-2024
- 131.Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, et al. Global distribution and prevalence ofhepatitis C virus genotypes. Hepatology 2015. 61: 77-87.
- 132. Magiorkinis G, Magiorkinis E, Paraskevis D, Ho SY, Shapiro B, et al. The global spread ofhepatitis C virus 1a and 1b: A phylodynamic and phylogeographic analysis. PLoS Med. 2009. 6: 1000198.
- 133. Microorganisms 2024. 12: 1035.

J Infect Dise Treat, 2025

- 134.Mohamed NA, Rashid ZZ, Wong KK, Abdullah SA, Rahman MM. Hepatitis C genotype and associated risks factors of patients at University Kebangsaan Malaysia Medical Centre. Pak. J. Med. Sci. 2013. 29: 1142-1146.
- 135.Kartashev V, Doring M, Nieto L, Coletta E, Kaiser R, et al. new findings in HCV genotype distribution in selected West European, Russian and Israeli regions. J. Clin. Virol. 2016. 81: 82-89.
- 136. Preciado MV, Valva P, Escobar-Gutierrez A, Rahal P, Ruiz-Tovar K, et al. Hepatitis C virus molecular evolution:

- Transmission, disease progressionand antiviral therapy. World J. Gastroenterol. 2014. 20: 15992-16013.
- 137.Li H, Stoddard MB, Wang S, Blair LM, Giorgi EE, et al. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing. PLoS Pathog. 2012. 8: 1002880.
- 138.Mohamoud YA, Mumtaz GR, Riome S, Miller D, Abu-Raddad LJ. The epidemiology of hepatitis C virus in Egypt: A systematic review and data synthesis. BMC Infect. Dis. 2013. 13: 288.
- 139.Markov PV, Pepin J, Frost E, Deslandes S, Labbé AC, et al. Phylogeography and molecular epidemiology of hepatitis C virus genotype 2 in Africa. J. Gen. Virol. 2009. 90: 2086-2096.
- 140.Irekeola AA, Malek NA, Wada Y, Mustaffa N, Muhamad NI, et al. Prevalence of HCV genotypes and subtypes in Southeast Asia: A systematic review and meta-analysis. PLoS ONE. 2021. 16: 0251673.
- 141. Zhang Z, Yao Y, Wu W, Feng R, Wu Zet al. Hepatitis C virus genotype diversity among intravenous drug users in Yunnan Province, Southwestern China. PLoS ONE. 2013. 8: 82598.
- 142. Liu JY, Lin HH, Liu YC, Lee SS, Chen YL, et al. Extremely high prevalence and genetic diversity of hepatitis C virus infection among HIV-infected injection drug users in Taiwan. Clin. Infect. Dis. 2008. 46: 1761-1768.
- 143. Pawlotsky JM. Hepatitis C virus genetic variability: Pathogenic and clinical implications. Clin. Liver Dis. 2003. 7: 45-66.
- 144. Murphy DG, Willems B, Vincelette J. Bernier L, Côté J, et al. Biological and clinicopathological features associated with hepatitis C virus type 5 infections. J. Hepatol. 1996. 24: 109-113.
- 145.Gededzha MP, Selabe SG, Blackard JT, Kyaw T, Mphahlele MJ. Near full-length genome analysis of HCV genotype 5strains from South Africa. Infect. Genet. Evol. 2014. 21: 118-123.
- 146. Verbeeck J, Maes P, Lemey P, Pybus OG, Wollants E, et al. Investigating the origin and spread of hepatitis C virus genotype 5a. J. Virol. 2006. 80: 4220-4226.
- 147. Thézé J, Lowes S, Parker J, Pybus O.G. Evolutionary and Phylogenetic Analysis of the Hepaciviruses and Pegiviruses. GenomeBiol. Evol. 2015. 7: 2996-3008.
- 148.Lyons S, Kapoor A, Sharp C, Schneider BS, Wolfe ND, et al. Nonprimatehepaciviruses in domestic horses, United kingdom. Emerg. Infect. Dis. 2012. 18: 1976-1982.
- 149.KimHS, MoonHW, SungHW, KwonHM. First identification and phylogenetic analysis of equine hepacivirus in Korea. Infect. Genet. Evol. 2017. 49: 268-272.
- 150. Scheel TK, Simmonds P, Kapoor A. Surveying the global virome: Identification and characterization of HCV-related animal hepaciviruses. Antivir. Res. 2015. 115: 83-93.
- 151. Warnock RC, Parham JF, Joyce WG, Lyson TR, Donoghue PC. Calibration uncertainty in molecular dating analyses: Thereis no substitute for the prior evaluation of time priors. Proc. Biol. Sci. 2015. 282: 20141013.
- 152.Ozaras R, Tahan V. Acute hepatitis C: Prevention and treatment. Expert. Rev. Anti Infect. Ther. 2009. 7: 351-361.
- 153.Masia R, Misdraji J. Liver and Bile Duct Infections. In Diagnostic Pathology of Infectious Disease. 2017. 21:272 154.Elsevier: Amsterdam, The Netherlands. 2018. 272-322.

Page: 15 of 21

www.oaskpublishers.com

- 155. Younis BB, Arshad R, Khurhsid S, Masood J, Nazir F, et al. Fulminant hepatic failure (FHF) due to acute hepatitis C.Pak. J. Med. Sci. 2015. 31: 1009-1011.
- 156. Gordon FD, Anastopoulos H, Khettry U, Loda M, Jenkins RL, et al. Hepatitis C infection: A rare cause offulminant hepatic failure. Am. J. Gastroenterol. 1995. 90: 117-120.
- 157. Hoofnagle JH. Hepatitis C: The clinical spectrum of disease. Hepatology 1997. 26: 15s-20s.
- 158.Baldo V, Baldovin T, Trivello R, Floreani A. Epidemiology of HCV Infection. Curr. Pharm. Des. 2008. 14: 1646-1654.
- 159. Akkaya O, Kiyici M, Yilmaz Y, Ulukaya E, Yerci O. Clinical significance of activity of ALT enzyme in patients with hepatitisC virus. World J. Gastroenterol. 2007. 13: 5481-5485.
- 160.Glynn SA, Wright DJ, Kleinman SH, Hirschkorn D, Tu Y, et al. Dynamics of viremia in early hepatitis C virus infection. Transfusion. 2005. 45: 994-1002.
- 161. Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 2013. 10: 553-562.
- 162. Hajarizadeh B, Grady B, Page K, Kim AY, McGovern BH, et al. Patterns of hepatitis C virus RNA levels during acute infection: The InC3 study. PLoS ONE. 2015. 10: e0122232.
- 163.Ghany MG, Chan TM, Sanchez-Pescador R, Urdea M, Lok AS. Correlation between serum HCV RNA and aminotransferase levels in patients with chronic HCV infection. Dig. Dis. Sci. 1996. 41: 2213-2218.
- 164. Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J. Leukoc. Biol. 2014. 96: 535-548.
- 165.Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature. 2005. 436: 946-952.
- 166. Grebely J, Prins M, Hellard M, Cox AL, Osburn WO, et al. Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: Towards a vaccine. Lancet Infect. Dis. 2012. 12: 408-414.
- 167. Hoofnagle JH. Course and outcome of hepatitis C. Hepatology. 2002: 36: S21-S29.
- 168.Kenny-Walsh, E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. Irish Hepatology. Research Group. N. Engl. J. Med. 1999. 340: 1228-1233.
- 169.Inoue G, Horiike N, Michitaka K, Onji M. Hepatitis C virus clearance is prominent in women in an endemic area.J. Gastroenterol. Hepatol. 2000. 15: 1054-1058.
- 170. Yamakawa Y, Sata M, Suzuki H, Noguchi S, Tanikawa K. Higher elimination rate of hepatitis C virus among women. J. Viral Hepat. 1996. 3: 317-321.
- 171. Zhang M, Rosenberg PS, Brown DL, Preiss L, Konkle BA, et al. Correlates of spontaneous clearance of hepatitis C virus among people with hemophilia. Blood. 2006. 107: 892-897.
- 172.Messick K, Sanders JC, Goedert JJ, Eyster ME. Hepatitis C viral clearance and antibody reactivity patterns in persons with haemophilia and other congenital bleeding disorders. Haemophilia. 2001. 7: 568-574.
- 173. Grebely J, Raffa JD, Lai C, Krajden M, Conway B, Tyndall MW. Factors associated with spontaneous clearance of hepatitis C virus among illicit drug users. Can. J. Gastroenterol. 2007. 21: 447-451.

- 174.Piasecki BA, Lewis JD, Reddy KR, Bellamy SL, Porter, S.B.; Weinrieb, R.M.; Stieritz, D.D.; Chang, K.M. Influence of alcohol use, race, and viral coinfections on spontaneous HCV clearance in a US veteran population. Hepatology. 2004. 40: 892–899.
- 175.Bellanti F, Vendemiale G, Altomare E, Serviddio G. The impact of interferon lambda 3 gene polymorphism on natural courseand treatment of hepatitis C. Clin. Dev. Immunol. 2012. 849373.
- 176. Tanaka Y, Nishida N, Sugiyama, Kurosaki M, Matsuura K, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic
- 177.hepatitis C. Nat. Genet. 2009. 41: 1105-1109.
- 178. Susser S, Herrmann E, Lange C, Hamdi N, Muller T, et al. Predictive value of interferon-lambda gene polymorphisms for treatment response in chronic hepatitis C. PLoS ONE 2014, 9, e112592.
- 179.Beinhardt S, Aberle JH, Strasser M, Dulic-Lakovic, E Maieron A, et al. Serum level of IP-10 increases predictive value of IL28B polymorphisms for spontaneous clearance of acute HCVinfection. Gastroenterology. 2012. 142: 78-85.
- 180. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009. 461: 798-801.
- 181.Wu LS, Wang H, Geng XP. Two IL28B polymorphisms are associated with the treatment response of different genotypes of hepatitis C in different racial populations: A meta-analysis. Exp. Ther. Med. 2012. 3: 200-206.
- 182. Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: An update. Hepatology. 2009. 49: 1335-1374.
- 183. Shen C, Jiang X, Li M, Luo Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers 2023. 15: 533.
- 184. Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J. Clin. Transl. Hepatol. 2018. 6: 79-84.
- 185.Khullar, Firpi RJ. Hepatitis C cirrhosis: New perspectives for diagnosis and treatment. World J. Hepatol. 2015. 7: 1843-1855.
- 186.Zeuzem S, Herrmann E. Dynamics of hepatitis C virus infection. Ann. Hepatol. 2002. 1: 56-63.
- 187.Gadalla SM, Preiss LR, Eyster ME, Goedert JJ. Correlates of high hepatitis C virus RNA load in a cohort of HIV-negative and HIV-positive individuals with haemophilia. J. Viral Hepat. 2011. 18: 161-169.
- 188.Mccaughan GW, George J. Fibrosis progression in chronic hepatitis C virus infection. Gut 2004. 53: 318-321.
- 189. Chen F, Zhang J, Wen B, Luo S, Lin Y, et al. HBV/HCV dual infection impacts viral load, antibody response, and cytokine expression differently from HBV or HCV single infection. Sci. Rep. 2016. 6: 39409.
- 190. Dhingra S, Ward SC, Thung SN. Liver pathology of hepatitis C, beyond grading and staging of the disease. World J. Gastroenterol. 2016. 22: 1357-1366.
- 191. Zeremski M, Dimova RB, Pillardy J, De Jong YP, Jacobson IM. et al. Fibrosis Progression in Patients With Chronic Hepatitis C Virus Infection. J. Infect. Dis. 2016. 214: 1164-1170.

- 192. Sebastiani G, Gkouvatsos K, Pantopoulos K. Chronic hepatitis C and liver fibrosis. World J. Gastroenterol. 2014. 20: 11033-11053.
- 193.Khatun M, Ray RB. Mechanisms Underlying Hepatitis C Virus-Associated Hepatic Fibrosis. Cells 2019. 8: 1249.
- 194.Reungoat E, Grigorov B, Zoulim, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers 2021. 13: 2270.
- 195.Khan S, Saxena R. Regression of Hepatic Fibrosis and Evolution of Cirrhosis: A Concise Review. Adv. Anat. Pathol. 2021. 28: 408-414.
- 196. Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J. Hepatol. 2014. 61: S79-S90.
- 197. Spengler U. Nattermann, J. Immunopathogenesis in hepatitis C virus cirrhosis. Clin. Sci. 2007. 112: 141-155.
- 198.Muir AJ. Understanding the Complexities of Cirrhosis. Clin. Ther. 2015. 37: 1822-1836.
- 199. Haep N, Florentino RM, Squires JE, Bell A, Soto-Gutierrez A. The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone. Semin. Liver Dis. 2021. 41: 213-224.
- 200. Demirtas CO, Brunetto MR. Surveillance for hepatocellular carcinoma in chronic viral hepatitis: Is it time to personalize it? World J. Gastroenterol. 2021. 27: 5536-5554.
- 201. Odenwald MA, Paul S. Viral hepatitis: Past, present, and future. World J. Gastroenterol. 2022. 28: 1405-1429.
- 202. Virz A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV
- 203. Vescovo T, Refolo G, Vitagliano G, Fimia GM, Piacentini M. Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma. Clin. Microbiol. Infect. 2016. 22: 853-861.
- 204.Goto K, Roca Suarez AA, W rensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int. J. Mol. Sci. 2020. 21: 3057.
- 205.Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J. Gastroenterol. 2019. 25: 42-58.
- 206. Pascut D, Hoang M, Nguyen NNQ, Pratama MY, Tiribelli C. HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers 2021. 13: 2485.
- 207.Irshad M, Gupta P, Irshad, K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J. Hepatol. 2017. 9: 1305-1314.
- 208.Mitchell JK, Mc Givern DR. Mechanisms of hepatocarcinogenesis in chronic hepatitis C. Hepat. Oncol. 2014. 1: 293-307
- 209.Kuna L, Jakab J, Smolic R, Wu GY, Smolic M. HCV Extrahepatic Manifestations. J. Clin. Transl. Hepatol. 2019. 7: 172-182.
- 210. Tang L, Marcell L, Kottilil S. Systemic manifestations of hepatitis C infection. Infect. Agent. Cancer. 2016. 11: 29.
- 211. Liu CH, Kao JH. Acute hepatitis C virus infection: Clinical update and remaining challenges. Clin. Mol. Hepatol. 2023. 29: 623–642.
- 212. Schillie S, Wester C, Osborne M, Wesolowski L, Ryerson AB. CDC Recommendations for Hepatitis C Screening

- Among Adults-United States, 2020. MMWR Recomm. Rep. 2020. 69: 1-17.
- 213.European AIDS Treatment Network (NEAT) Acute Hepatitis C Infection Consensus Panel. Acute hepatitis C in HIV-infected individuals: Recommendations from the European AIDS Treatment Network (NEAT) consensus conference. AIDS 2011. 25: 399-409.
- 214. Jhaveri R. Screening for Hepatitis C Virus: How Universal Is Universal? Clin. Ther. 2020, 42: 1434-1441.
- 215.Lee HW, Lee H, Kim BK, Chang Y, Jang JY, et al. Cost-effectiveness of chronic hepatitis C screening and treatment. Clin. Mol. Hepatol. 2022. 28: 164-173.
- 216.Ledesma F, Buti M, Domínguez-Hernández R, Casado MA, Esteban R. Is the universal population Hepatitis C virus screening a cost-effective strategy? A systematic review of the economic evidence. Rev. Esp. Quim. 2020. 33: 240-248.
- 217. Shahid I, Alzahrani AR, Al-Ghamdi SS Alanazi, I M Rehman S, Hassan S. Hepatitis C Diagnosis: Simplified Solutions, Predictive Barriers, and Future Promises. Diagnostics. 2021. 11: 1253.
- 218. Assoumou SA, Tasillo A, Leff JA, Schackman BR, Drainoni ML, Horsburgh CR, et al. Cost-Effectiveness of One-Time Hepatitis C Screening Strategies Among Adolescents and Young Adults in Primary Care Settings. Clin. Infect. Dis. 2018. 66: 376-384.
- 219. Wojcik EM, Sharon MJ, Davis SM, Lander OM, Burrell CN. Centers for Disease Control and Prevention Recommendations or Hepatitis C Testing: The Need to Adopt Universal Screening in an Appalachian Emergency Department. Acad. Emerg. Med. 2020. 27: 844-852.
- 220. Wei X, Zhao J, Yang L. Cost-effectiveness of new antiviral treatments for non-genotype 1 hepatitis C virus infection in China: A societal perspective. BMJ Glob. Health. 2020. 5: e003194.
- 221. Heffernan A, Cooke GS, Nayagam S, Thursz M, Hallett TB. Scaling up prevention and treatment towards the elimination ofhepatitis C: A global mathematical model. Lancet. 2019. 393: 1319-1329.
- 222. Warkad SD, Song KS, Pal D, Nimse SB. Developments in the HCV Screening Technologies Based on the Detection of Antigens and Antibodies. Sensors. 2019. 19: 4257.
- 223. Tang W, Chen W, Amini A, Boeras D, Falconer J, et al. Diagnostic accuracy of tests to detect Hepatitis C antibody: A meta-analysis and review of the literature. BMC Infect. Dis. 2017. 17: 695.
- 224. Kamili S, Drobeniuc J, Araujo AC, Hayden TM. Laboratory diagnostics for hepatitis C virus infection. Clin. Infect. Dis. 2012. 55: S43-S48.
- 225.Gupta E, Bajpai M, Choudhary A. Hepatitis C virus: Screening, diagnosis, and interpretation of laboratory assays. Asian J.Transfus. Sci. 2014. 8: 19-25.
- 226. Richter SS. Laboratory assays for diagnosis and management of hepatitis C virus infection. J. Clin. Microbiol. 2002. 40: 4407-4412.
- 227. Uliana CV, Riccardi CS, Yamanaka, H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J. Gastroenterol. 2014. 20: 15476-15491.
- 228.Giri S, Sykes EA, Jennings TL, Chan WC. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano. 2011. 5: 1580-1587.

- 229. Safi MA. Hepatitis C: An Overview of Various Laboratory Assays with their Mode of Diagnostic Cooperation. Clin. Lab. 2017. 63: 855-865.
- 230. Kadkhoda K, Smart G. HCV antigen testing for the diagnosis of hepatitis C infection: A cost-efficient algorithm. Clin. Lab. 2014. 60: 677–680.
- 231. Shenge JA, Osiowy C. Rapid Diagnostics for Hepatitis B and C Viruses in Low- and Middle-Income Countries. Front. Virol. 2021. 1: 742722.
- 232.Meng S, Li J, A novel duplex real-time reverse transcriptasepolymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control. Virol. J. 2010. 7: 117.
- 233. Wang QQ, Zhang J, Hu JS, Chen HT, Du L, et al. Rapid detection of hepatitis C virus RNA by a reverse transcription loop-mediated isothermal amplification assay. FEMS Immunol. Med. Microbiol. 2011. 63: 144-147.
- 234.Bastos DO, Perez RM, Silva IS, Lemos LB, Simonetti JP et al. Transcription mediated amplification (TMA) for the assessment of viremia in hemodialysis patients with hepatitis C. J. Med. Virol. 2012. 84: 596-600.
- 235. Tsongalis GJ. Branched DNA technology in molecular diagnostics. Am. J. Clin. Pathol. 2006. 126: 448-453.
- 236. European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018. 69: 461-511.
- 237. Daniel HD, David J, Raghuraman S, Gnanamony M, Chandy GM, et al. Comparison of Three Different Hepatitis C Virus Genotyping Methods: 5'NCR PCR-RFLP, Core Type-Specific PCR, and NS5b Sequencing in a TertiaryCare Hospital in South India. J. Clin. Lab. Anal. 2017. 31: e22045.
- 238.Flemming JA, Hurlbut DJ, Mussari B, Hookey LC. Liver biopsies for chronic hepatitis C: Should non-ultrasound-guided biopsies be abandoned? Can. J. Gastroenterol. 2009. 23: 425-430.
- 239. Seeff LB, Everson GT, Morgan TR, Curto TM, Lee WM, et al. Complication rate of percutaneous liver biopsies among persons with advanced chronic liver disease inthe HALT-C trial. Clin. Gastroenterol. Hepatol. 2010. 8: 877-883.
- 240. Abu-Freha N, Mathew Jacob B, Elhoashla A, Afawi Z, Abu-Hammad T, et al. Chronic hepatitis C: Diagnosis and treatment made easy. Eur. J. Gen. Pr. 2022. 28: 102–108.
- 241.Martínez SM, Crespo G, Navasa M, Forns X. Noninvasive assessment of liver fibrosis. Hepatology. 2011. 53: 325–335.
- 242.Florea M, Serban T, Tirpe GR, Tirpe A, Lupsor-Platon M. Noninvasive assessment of hepatitis C virus infected patients using vibration-controlled transient elastography. J. Clin. Med. 2021. 10: 2575.
- 243. Fujita K, Oura K, Yoneyama H, Shi T, Takuma K, Nakahara M, Tadokoro T, Nomura T, Morishita A, Tsutsui K, et al. Albumin-bilirubin score indicates liver fibrosis staging and prognosis in patients with chronic hepatitis C. Hepatol. Res. 2019. 49: 731–742.
- 244. Schiavon Lde L, Narciso-Schiavon JL, de Carvalho-Filho RJ. Non-invasive diagnosis of liver fibrosis in chronic hepatitis C. World J. Gastroenterol. 2014. 20: 2854–2866.
- 245. Chen CH, Yu ML. Evolution of interferon-based therapy for chronic hepatitis C. Hepat. Res. Treat. 2010. 2010: 140953.
- 246.Kaur KK, Allahbadia G, Singh M. Advances in HCV treatment Effect of HCV infection/HCV treatment (PEG-

- IFN/Ribavirin) on fertility (ovarian reserve): A case report. J. Gynecol. Neonatal Biol. 2016. 2(3): 1–3.
- 247. Hansen N, Obel N, Christensen PB, Kjar M, Laursen AL, Krarup HB, Moller A, Schlichting P, Bukh J, Weis N. Effectiveness of treatment with pegylated interferon and ribavirin in an unselected population of patients with chronic hepatitis C: A Danish nationwide cohort study. BMC Infect. Dis. 2011. 11: 177.
- 248.Lynch EN, Russo FP. Outcomes and follow-up after hepatitis C eradication with direct-acting antivirals. J. Clin. Med. 2023. 12: 2195.
- 249. Donato MF, Bastiampillai AJ, Manini M, Monico S. Twelve-week post-treatment undetectable hepatitis C virus (HCV)-RNA by PCR assay predicts a sustained virological response to anti-HCV therapy independently from immunological status of the infected patients. J. Antimicrob. Chemother. 2013. 68: 974–975.
- 250. Awasthi A, Katiyar H, Rungta S, Deep A, Kumar V, Shalimar, Kumar A, et al. Eight versus twelve weeks of sofosbuvir-velpatasvir in treatment-naive non-cirrhotic patients with chronic hepatitis C virus infection: Study protocol for a multicentric, open labelled, randomized, non-inferiority trial (RESOLVE trial). 2023. 18: e0285725.
- 251.Zarębska-Michaluk D, Piekarska A, Jaroszewicz J, Klapaczyński J, Sitko M, Tudrujek-Zdunek M, Tomasiewicz K, Jelica-Wdowik T, Pabjan P, Lorenc B, et al. Efficacy of 8- versus 12-week treatment with ledipasvir/sofosbuvir in chronic hepatitis C patients eligible for 8-week regimen in a real-world setting. Arch. Med. Sci. 2022. 18: 1460–1466.
- 252.Reau N, Cheng WH, Shao Q, Marx SE, Brooks H, Martinez A. Real-world effectiveness of 8-week glecaprevir/pibrentasvir in treatment-naive, compensated cirrhotic HCV patients. Infect. Dis. Ther. 2023. 12: 1849–1860.
- 253. Elbadry M, Moussa AM, Eltabbakh M, Al Balakosy A, Abdalgaber M, et al. The art of managing hepatitis C virus in special population groups: A paradigm shift. Egypt. Liver J. 2022. 12: 61.
- 254.Bourlière M, Pietri O. Hepatitis C virus therapy: No one will be left behind. Int. J. Antimicrob. Agents. 2019. 53: 755-760.
- 255. Shiffman ML. Side effects of medical therapy for chronic hepatitis C. Ann. Hepatol. 2004. 3: 5–10.
- 256.Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: Efficacy, side effects, and complications. Gut. 2006. 55: 1350-1359.
- 257. Dieterich DT, Spivak JL. Hematologic disorders associated with hepatitis C virus infection and their management. Clin. Infect. Dis. 2003. 37: 533-541.
- 258. Almeida PH, Matielo CEL, Curvelo LA, Rocco RA, Felga G, et al. Update on the management and treatment of viral hepatitis. World J. Gastroenterol. 2021. 27: 3249-3261.
- 259.Pan Q, Peppelen bosch MP, Janssen HL, de Knegt RJ. Telaprevir/boceprevir era: From bench to bed and back. World J. Gastroenterol. 2012. 18: 6183-6188.
- 260. Nyalakonda H, Utay NS. A new era of therapy for hepatitis C virus infection. Curr. Opin. Infect. Dis. 2015. 28: 471-478.
- 261. Wilby KJ, Partovi N, Ford JA, Greanya E, Yoshida EM. Review of boceprevir and telaprevir for the treatment of chronic hepatitis C. Can. J. Gastroenterol. 2012. 26: 205-210.

- 262.McQuaid T, Savini C, Seyedkazemi S. Sofosbuvir, a significant paradigm changes in HCV treatment. J. Clin. Transl. Hepatol. 2015. 3: 27-35.
- 263. Gritsenko D, Hughes G. Ledipasvir/sofosbuvir (Harvoni): Improving options for hepatitis C virus infection. Pharm. Ther. 2015. 40: 256-276.
- 264. Al-Salama ZT, Deeks ED. Elbasvir/grazoprevir: A review in chronic HCV genotypes 1 and 4. Drugs. 2017. 77: 911-921.
- 265. Lampertico P, Carrión JA, Curry M, Turnes J, Cornberg M, et al. Real-world effectiveness and safety of glecaprevir/ pibrentasvir
- 266. Sacco R, Messina V, Gentilucci UV, Adinolfi LE, Ascione A, et al. Sustained virological response in patients with HCV treated with daclatasvir plus sofosbuvir, with or without ribavirin: A large, field-practice study. Drugs Context. 2020. 9: 1-6.
- 267. Alshuwaykh O, Kwo PY. Current and future strategies for the treatment of chronic hepatitis C. Clin. Mol. Hepatol. 2021. 27: 246–256.
- 268. Zeuzem S, Foster GR, Wang S, Asatryan A, Gane E, et al. Glecaprevir-pibrentasvir for 8 or 12 weeks in HCV genotype 1 or 3 infection. N. Engl. J. Med. 2018. 378: 354–369.
- 269. Wyles D, Poordad F, Wang S, Alric L, Felizarta F, Kwo PY, Maliakkal B, Agarwal K, Hassanein T, Weilert F, et al. Glecaprevir/pibrentasvir for hepatitis C virus genotype 3 patients with cirrhosis and/or prior treatment experience: A partially randomized phase 3 clinical trial. Hepatology. 2018. 67: 514–523.
- 270. Asselah T, Kowdley KV, Zadeikis N, Wang S, Hassanein T, Horsmans Y, Colombo M, Calinas F, Aguilar H, de Ledinghen V, et al. Efficacy of glecaprevir/pibrentasvir for 8 or 12 weeks in patients with hepatitis C virus genotype 2, 4, 5, or 6 infection without cirrhosis. Clin. Gastroenterol. Hepatol. 2018. 16: 417–426.
- 271. Forns X, Lee SS, Valdes J, Lens S, Ghalib R, et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with ompensated cirrhosis (EXPEDITION-1): A single-arm, open-label, multicentre phase 3 trial. Lancet Infect. Dis. 2017. 17: 1062-1068.
- 272. Feld JJ, Jacobson IM, Hézode C, Asselah T, Ruane PJ, et al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 2015. 373: 2599–2607.
- 273.Foster GR, Afdhal N, Roberts SK, Brau N, Gane EJ, et al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 infection. N. Engl. J. Med. 2015. 373: 2608-2617.
- 274.Kowdley KV, Gordon SC, Reddy KR, Rossaro L, Bernstein DE, et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med. 2014. 370: 1879–1888.
- 275.Lo CC, Huang CF, Cheng PN, Tseng KC, Chen CY, et al. Ledipasvir/sofosbuvir for HCV genotype 1, 2, 4-6 infection: Real-world evidence from a nationwide registry in Taiwan. J. Formos. Med. Assoc. 2022. 121: 1567-1578.
- 276. Shiha G, Esmat G, Hassany M, Soliman R, Elbasiony M, et al. Ledipasvir/sofosbuvir with or without ribavirin for 8 or 12 weeks for the treatment of HCV genotype 4 infection: Results from a randomised phase III study in Egypt. Gut. 2019. 68: 721-728.
- 277. Abergel A, Asselah T, Metivier S, Kersey K, Jiang D, et al. Ledipasvir-sofosbuvir in patients with hepatitis C virus

- genotype 5 infection: An open-label, multicentre, singlearm, phase 2 study. Lancet Infect. Dis. 2016. 16: 459-464.
- 278. Nguyen MH, Trinh H, Do S, Nguyen T, Nguyen P, et al. Open-label study of 8 vs. 12 weeks of ledipasvir/sofosbuvir in genotype 6 treatment-naive or experienced patients. Am. J. Gastroenterol. 2017. 112: 1824-1831.
- 279. Zeuzem S, Ghalib R, Reddy KR, Pockros PJ, Ben Ari Z, et al. Grazoprevir-elbasvir combination therapy for treatment-naive cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection: A randomized trial. Ann. Intern. Med. 2015. 163: 1-13282343.
- 280.Medina C, García AH, Crespo FI, Toro FI, Mayora SJ, et al. A Synopsis of Hepatitis C Virus Treatments and Future Perspectives. Curr. Issues Mol. Biol. 2023. 45: 8255-8276.
- 281.Feld JJ, Cypel Mm, Kumar D, Dahari H, Pinto Ribeiro RV, et al. Short-course, direct-acting antivirals and ezetimibe to prevent HCV infection in recipients of organs from HCV-infected donors: A phase 3, single-centre, open-label study. Lancet Gastroenterol. Hepatol. 2020. 5: 649-657.
- 282. Mohamed HZ, Sabri NA, Zaki HM, Shaheen SM. Clinical effects of simvastatin in chronic hepatitis C patients receiving sofosbuvir/daclatasvir combination. A randomized, placebocontrolled, double-blinded study. Clin. Exp. Hepatol. 2020. 6; 99-105.
- 283. Cartwright EJ, Patel PR. Opportunities for Enhanced Prevention and Control of Hepatitis C Through Improved Screening and Testing Efforts. J. Infect. Dis. 2024. 229: 350-356.
- 284. Delile J-M, de Ledinghen V, Jauffret-Roustide M, Roux P, Reiller B, et al. Hepatitis C virus prevention and care for drug injectors: The French approach. Hepatol. Med. Policy 2018. 3: 7.
- 285.Hoj SB, Minoyan N, Artenie AA, Grebely J, Bruneau J. The role of prevention strategies in achieving HCV elimination in Canada: What are the remaining challenges? Can. Liver J. 2018. 1: 4-13.
- 286. Ward JW, Valdiserri RO, Koh HK. Hepatitis C virus prevention, care, and treatment: From policy to practice. Clin. Infect. Dis. 2012. 55: 58-63.
- 287. Van Santen DK, Sacks-Davis R, Stewart A, Boyd A, Young J, et al.Treatment as prevention effect of direct-acting antivirals on primary hepatitis C virus incidence: Findings from a multinational cohort between 2010 and 2019. eClinical Medicine. 2023. 56: 101810.
- 288.Kidney Disease: Improving Global Outcomes (KDIGO)
  Hepatitis C Work Group. KDIGO 2018 Clinical Practice
  Guideline for thePrevention, Diagnosis, Evaluation, and
  Treatment of Hepatitis C in Chronic Kidney Disease.
  Kidney Int. Suppl. 2018. 8: 91-165.
- 289.Pawlotsky JM, Ramers CB, Dillon JF, Feld JJ, Lazarus JV. Simplification of Care for Chronic Hepatitis C Virus Infection. Semin. Liver. 2020. 40: 392-402.
- 290.Kim HL, Kim KA, Choi GH, Jang ES, Ki M, et al. A cost-effectiveness study of universal screening for hepatitis C virus infection in South Korea: A societal perspective. Clin. Mol. Hepatol. 2022. 28: 91-104.
- 291. Nagai K, Ide K, Kawasaki Y, Tanaka-Mizuno S, Seto K, et al. Estimating the cost-effectiveness of screening for hepatitis C virus infection in Japan. Hepatol. Res. 2020. 50: 542-556.

- 292. Platt L, Minozzi S, Reed J, Vickerman P, Hagan H, French C, et al. Needle and syringe programmed and opioid substitution therapy for preventing HCV transmission among people who inject drugs: Findings from a Cochrane Review and meta-analysis. Addiction. 2018. 113: 545-563.
- 293.Roux P, Le Gall JM, Debrus M, Protopopescu C, Ndiaye K, et al. Innovative community-based educational face-to-face intervention to reduce HIV, hepatitis C virus and other blood-borne infectious risks in difficult-to-reach people who inject drugs: Results from the ANRS-AERLI intervention study. Addiction. 2016. 111: 94-106.
- 294.Raad II, Chaftari AM, Torres HA, Ayoub EM, Narouz LI, et al. Challenge of hepatitis C in Egypt andhepatitis B in Mauritania. World J. Hepatol. 2018. 10: 549-557.
- 295.Pan CQ, Park JS. Revamping hepatitis C global eradication efforts: Towards simplified and enhanced screening, prevention, and treatment. Transl. Gastroenterol. Hepatol. 2024. 9.
- 296.Xie Q, Xuan JW, Tang H, Ye XG, Xu P, et Al. Hepatitis C virus cure with direct acting antivirals: Clinical, economic, societal and patient value for China. World J. Hepatol. 2019. 11: 421-441.
- 297. Ayoub HH, Mahmud S, Chemaitelly H, Abu-Raddad LJ. Treatment as prevention for hepatitis C virus in the Middle Eastand North Africa: A modeling study. Front. Public Health. 2023. 11: 1187786.
- 298.Colpitts CC, Baumert TF. Addressing the Challenges of Hepatitis C Virus Resistance and Treatment Failure. Viruses. 2016. 8: 226.
- 299. Malandris K, Kalopitas G, Theocharidou E, Germanidis G. The Role of RASs /RVs in the Current Management of HCV. Viruses. 2021. 13: 2096.
- 300. Van Buuren N, Tellinghuisen TL, Richardson CD, Kirkegaard K. Transmission genetics of drug-resistant hepatitis C virus. ELife. 2018. 7: e32579.
- 301.Lee YM, Lin HJ, Chen YJ, Lee CM, Wang SF, et al. Molecular epidemiology of HCV genotypes among injection drug users in Taiwan: Full-length sequences of two new subtype 6w strains and a recombinant form\_2b6w. J. Med. Virol. 2010. 82: 57–68.
- 302. Alqahtani SA, Sulkowski MS. Chronic Hepatitis C: Advances in Therapy and the Remaining Challenges. Med. Clin. N. Am. 2023. 107: 423-433.
- 303.Ribeiro RM, Li H, Wang S, Stoddard MB, Learn GH, et al. Quantifying the diversification of hepatitis C virus (HCV) during primary infection: Estimates of the in vivo mutation rate. PLoS Pathog. 2012. 8: e1002881.
- 304. Farci P. New insights into the HCV quasis pecies and compartmentalization. Semin. Liver Dis. 2011. 31: 356-374.
- 305.Di Maio VC, Cento V, Mirabelli C, Artese A, Costa G, et al. Ceccherini-Silberstein, F. Hepatitis C virus genetic variability and the presence of NS5B resistance-associated mutations as natural polymorphisms in selected geno types could affect the response to NS5B inhibitors. Antimicrob. Agents Chemother. 2014. 58: 2781-2797.
- 306.Leggewie M, Sreenu VB, Abdelrahman T, Leitch EC, Wilkie GS, et al. Natural NS3 resistance polymorphisms occur frequently prior to treatment in HIV-positive patients with acute hepatitis C.AIDS 2013. 27: 2485-2488.

- 307.Bhatia M, Gupta E. Emerging resistance to directly-acting antiviral therapy in treatment of chronic Hepatitis C infection-A brief\review of literature. J. Fam. Med. Prim. Care. 2020. 9: 531-538.
- 308. Welzel TM, Bhardwaj N, Hedskog C, Chodavarapu K, Camus G, et al. Global epidemiology of HCV subtypes and resistance-associated substitutions evaluated by sequencing-based subtypeanalyses. J. Hepatol. 2017. 67: 224-236.
- 309. Chen ZW, Li H, Ren H, Hu P. Global prevalence of preexisting HCV variants resistant to direct-acting antiviral agents(DAAs): Mining the GenBank HCV genome data. Sci. Rep. 2016. 6: 20310.
- 310. Sarrazin C. Treatment failure with DAA therapy: Importance of resistance. J. Hepatol. 2021. 74: 1472-1482.
- 311. Sarrazin C, Cooper CL, Manns MP, Reddy KR, Kowdley, et al. No impact of resistance-associated substitutions on the efficacy of sofosbuvir, velpatasvir, and voxilaprevir for12 weeks in HCV DAA-experienced patients. J. Hepatol. 2018. 69: 1221-1230.
- 312.Perales C. Quasis pecies dynamics and clinical significance of hepatitis C virus (HCV) antiviral resistance. Int. J. Antimicrob.Agents. 2020. 56: 105562.
- 313.Cox AL. Challenges and Promise of a Hepatitis C Virus Vaccine. Cold Spring Harb. Perspect. Med. 2020. 10: a036947.
- 314.Henry, B. Drug Pricing & Challenges to Hepatitis C Treatment Access. J. Health Biomed. Law. 2018. 14: 265-283.
- 315.Graham CS, Swan TA. Path to eradication of hepatitis C in low- and middle-income countries. Antivir. Res. 2015. 119: 89-96.
- 316. Khalsa JH, Mathur P. Hepatitis C Virus Infection in Persons Who Inject Drugs in the Middle East and North Africa: Intervention Strategies. Viruses. 2021. 13: 1363.
- 317.Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology. 2019. 156: 418-430.
- 318.Bowen DG, Walker CM. Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. J. Exp. Med. 2005. 201: 1709-1714.
- 319.Bull RA, Leung P, Gaudieri S, Deshpande P, Cameron B, et al. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection. J. Virol. 2015. 89: 5478-5490.
- 320.Liang TJ. Current progress in development of hepatitis C virus vaccines. Nat. Med. 2013. 19: 869-878.
- 321. Adugna A. Therapeutic strategies and promising vaccine for hepatitis C virus infection. Immun. Inflamm. Dis. 2023. 11: e977.
- 322.324\. Schlotthauer, F.; McGregor, J.; Drummer, H.E. To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021. 13: 805.
- 323. Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines. 2020. 8: 90.
- 324.Filskov J, Andersen P, Agger EM, Bukh J. HCV p7 as a novel vaccine-target inducing multifunctional CD4+ and CD8+ T-cell stargeting liver cells expressing the viral antigen. Sci. Rep. 2019. 9: 14085.

- 325.Marín MQ, Pérez P, Ljungberg K, Sorzano CÓ S, Gómez CE, et al. Potent AntihepatitisC Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. J. Virol. 2019. 93: e00055-19.
- 326.Oliveira Correa JD, Chies JAB. The COVID-19 Pandemic Affected Hepatitis C Virus Circulation and Genotypic Frequencies-Implications for Hepatitis C Prevention, Treatment and Research. Epidemiologia. 2024. 5: 160-166.
- 327.PatraT, Meyer K, Haga Y, Reagan EK, Weissman, D.; Ray, R. Hepatitis C virus E1 and modified E2 delivered from an MRNA vaccine induces protective immunity. NPJ Vaccines 2023, 8, 42.
- 328. Schroeder SE, Pedrana A, Scott N, Wilson D, Kuschel C, et al. Innovative strategies for the elimination of viral hepatitis at a national level: A country case series. Liver Int. 2019. 39: 1818-1836.
- 329. Waheed Y, Siddiq M Jamil, Z.; Najmi, M.H. Hepatitis elimination by 2030: Progress and challenges. World J. Gastroenterol. 2018,24, 4959-4961.
- 330.Cox AL, El-Sayed MH, Kao JH, Lazarus JV, Lemoine M, et al. Progress towards elimination goals for viral hepatitis. Nat. Rev. Gastroenterol. Hepatol. 2020. 17: 533-542.
- 331. The Coalition for Global Hepatitis Elimination. About the Coalition. 2024.
- 332. Janjua NZ, Butt ZA, Mahmood B, Altaf A. Towards safe injection practices for prevention of hepatitis C transmission in\South Asia: Challenges and progress. World J. Gastroenterol. 2016. 22: 5837-5852.
- 333.Othman B, Barakat M, Omar A, Al-Rawashdeh A, Qashou Y, et al. Evaluation of hepatitis B knowledge, practices, and beliefs among the Jordanian population: A cross-sectional study. PLoS ONE 2022. 17: e0277186.
- 334.Di Ciaccio M, Villes V, Perfect C, El Kaim JL, Donatelli M, et al. Need for integration ofhepatitis C (HCV) services in community-based settings for people who inject drugs: Results from a global values and preferences survey. Harm Reduct. J. 2023. 20: 15.
- 335.Royer FT, Burton JC, Burns J, Lloyd MG, Onwe R, et al .Small Molecule Targeting of Atypical p38 Protects Against Viral Infection .FASEB J. 2025. 39: e71096.
- 336.Kao HJ, Weng TH, Chen CH, Yu CC, Huang CC, et al: Identification and Characterization of HCV NS3 Protease Inhibitory Peptides. Int J Mol Sci. 2025. 26: 5356.
- 337. Sharma K, Murthy MK. A review of historical landmarks and pioneering technologies for the diagnosis of Hepatitis C Virus (HCV). Eur J Clin Microbiol Infect Dis. 2025. 44: 1289-1303.

- 338.Rautela A, Raj N, Verma A, AgarwalJ, Verma P, et al. Clinico epidemiology and Diagnosis of Hepatitis C: Evaluating HCV Core Antigen Assay as a Diagnostic Tool in a Tertiary Care Teaching Hospital of North India .Euro asian J Hepato gastroenterol 2024. 14: 176-181.
- 339.Kulvinder Kochar Kaur, Allahbadia GN, Singh M. 'The role of Utilization of Epigenetics Treatment Strategies Regarding Hepatitis B virus covalently closed circular DNA Silencing with the aim of Attaining Cure: A Narrative Review' Accepted for Publication in November issue of Acta ASGIS. 2022
- 340. Kulvinder Kochar Kaur, Allahbadia GN, Singh M. An Update on the Methodology Hepatitis B Virus (HBV)Uses for its Lifecycle: from Nuclear Import of Capsid to ccc DNA for Permanent HBV Cure Acquisition /Avoidance of Persistence of ccc DNA. Genesis J Microbiol Immunol. 2023. 1: 4.
- 341. Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Targeting dysfunctional Mitochondrial Metabolism of Hepatocytes caused hepatitis B virus(HBV) in the treatment of the Chronic HBV infection the a Narrative Review. J Hum Virol Retrovirol. 2024. 11: 4-12.
- 342. Kulvinder Kochar Kaur, Allahbadia GN, Singh M. 'A Comprehensive update on the recent advancements in the treatment of chronic hepatitis B-is it feasible to attain a complete cure-practical hurdles-A Narrative Review". Liver Res Open J. 2024. 5: 1-22.
- 343. Kulvinder Kochar Kaur, Allahbadia GN, Singh M. Exposition of lost function of exhausted CD8+ T cells in chronic hepatitis B virus(HBV)/ cHCV infections: enolase as ametabolic checkpoint for variable exhaustion programmes in hepatitis virus- particular CD8+ T cells- A Short Communication' 'Acta Scientific Gastrointestinal Disorders. 2024. 7: 15-24.
- 344.LiuJ, YuanT, CXue L, Liang HF. Pathogenesis, prevention, and therapeutic advances in hepatitis B, C, and D. Virol J. 2025. 22: 274.

Copyright: © 2025 Kulvinder Kochar Kaur, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.