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ABSTRACT
The nonlinear behavior of the brain’s information processing represents one of the key tasks in modern neuroscience, and a lot of research has been 
conducted in trying to rhythmicity in brain networks. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any 
process. Several factors must be considered, and multiple objectives must be met simultaneously. Bifurcation analysis and multiobjective nonlinear model 
predictive control (MNLMPC) calculations are performed on two brain dynamic models. The MATLAB program MATCONT was used to perform the 
bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the state-of-the-art global 
optimization solvers IPOPT and BARON. The bifurcation analysis Hopf bifurcation points that lead to limit cycles in the two models. These Hopf points 
were eliminated using an activation factor that involves the tanh function. The multiobjective nonlinear model predictive control calculations converge to 
the Utopia point in both the problems, which is the best solution.
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Background
Yamaguchi showed that lecticans are organizers of the brain’s 
extracellular matrix [1]. Manor et al. showed that synaptic 
depression mediates bistability in neuronal networks with 
recurrent inhibitory connectivity [2]. Oohashi et al demonstrated 
that Bral1, a brain-specific link protein, colocalizes with the 
versican v2 isoform at the nodes of Ranvier in developing and 
adult mouse central nervous systems [3]. Bekku et al performed 
the molecular cloning of bral2, a novel brain-specific link protein, 
and demonstrated the immunohistochemical colocalization with 
brevican in perineuronal nets [4]. Dityatev et al showed the 
synaptic plasticity of extracellular matrix molecules [5]. Carulli et 
al. determined the composition of perineuronal nets in the adult rat 
cerebellum and the cellular origin of their components [6]. 

Rich and Wenner researched sensing and expressing homeostatic 
synaptic plasticity [7]. Dityatev et al investigated the activity-
dependent formation and functions of chondroitin sulfate-rich 
extracellular matrix of perineuronal nets [8]. Turrigiano showed 
that homeostatic signaling was the positive side of negative 
feedback [9]. Xie et al demonstrated the existence of Hopf 

bifurcations in the Hodgkin-Huxley model [10]. Cingolani et al. 
investigated the activity-dependent regulation of synaptic AMPA 
receptor composition and abundance by beta 3 integrins [11]. 

Durstewitz discussed the implications of synaptic biophysics for 
recurrent network dynamics and active memory [12]. Dityatev 
remodeled the extracellular matrix and epileptogenesis [13]. 
Kochlamazashvili et al. showed that the extracellular matrix 
molecule hyaluronic acid regulates hippocampal synaptic 
plasticity by modulating postsynaptic l-type ca(2+) channels 
[14]. Dityatev et al. demonstrated that the extracellular matrix 
played a dual role in synaptic plasticity and homeostasis [15]. 
Dityatev and Rusakov demonstrated the existence of molecular 
signals of plasticity at the tetrapartite synapse [16]. Wlodarczyk 
et al. showed the role played by extracellular matrix molecules, 
their receptors, and secreted proteases in synaptic plasticity [17]. 
Kazantsev et al. developed a homeostatic model of neuronal firing 
governed by feedback signals from the extracellular matrix [18]. 

Soleman et al. investigated the targeting of the neural 
extracellular matrix in neurological disorders [19]. Dembitskaya 
et al studied the effects of enzymatic removal of chondroitin 
sulfates on neural excitability and synaptic plasticity in the 
hippocampal CA1 region [20]. Favuzzi et al. investigated the 
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activity-dependent gating of parvalbumin interneuron function 
by the perineuronal net protein brevican [21]. Jercog et al 
demonstrated that the cortical dynamics reflect state transitions 
in a bistable network [22]. Schmidt et al showed that the network 
mechanisms cause oscillations in cognitive tasks [23]. Azeez et 
al. demonstrated the diurnal fluctuation of extracellular matrix 
organization in the lateral hypothalamus in basal conditions and 
in neuroinflammation [24]. 

Song and Dityatev investigated the interaction between 
glia, extracellular matrix and neurons [25]. Lazarevichet al 
demonstrated the existence of activity-dependent switches 
between dynamic regimes of extracellular matrix expression 
[26]. Rozhnova et al showed the impact of the brain extracellular 
matrix on neuronal firing reliability and spike-timing jitter [27]. 
Rozhnova demonstrated the chaotic change of extracellular 
matrix molecules concentration in the presence of periodically 
varying neuronal firing rate [28]. Rozhnova et al. performed 
bifurcation analysis calculations on a model of brain extracellular 
matrix [29]. 

This work aims to perform bifurcation and multiobjective 
nonlinear model predictive control(MNLMPC) on two brain 
dynamics models, which are Brain extracellular matrix model 
of Rozhnova et al. and the Hodgkin-Huxley model of Xie et 
al [10,29]. This document is organized as follows. The model 
equations for both the models are first described. This is followed 
by a description of the numerical methods (bifurcation analysis 
and MNLMPC). The results and discussion are then presented, 
followed by the conclusions. 

Brain Dynamics models
Model 1 : Brain extracellular matrix model [29].
The equations in this model are 
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zval and pval represent the concentration of the ECM molecules 
and the concentration of proteases. ,z pθ θ  are the activation 
midpoints and are the bifurcation and control parameters. 

Model 2: Hodgkin-Huxley model [10].
The equations in this model are 
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The parameters are
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vval is the electrical potential difference voltage across the nerve 
membrane (membrane potential). mval and hval represent the 
gating variables for the activation and inactivation of the sodium 
ion channel, respectively. nval is the activation gating variable 
of the potassium ion channel. IEXT is the external current and the 
bifurcation and control parameter. 

Numerical Procedures 
Bifurcation analysis 
The MATLAB software MATCONT is used to perform the 
bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT [30,31]. This program 
detects Limit points (LP), branch points (BP), and Hopf 
bifurcation points(H) for an ODE system 

( , )dx f x
dt

α= 					                 (4)

nx R∈  Let the bifurcation parameter be α Since the gradient is 
orthogonal to the tangent vector, 

T he tangent plane at any point w = [w1,w2,w3,w4,...wn+1] must 
satisfy 
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where /f x∂ ∂  is the Jacobian matrix. For both limit and branch 
points, the matrix [ /f x∂ ∂ ] must be singular. The n+1 th component 
of the tangent vector wn+1 = 0 for a limit point (LP)and for a 
branch point (BP) the matrix T

A
w
 
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 must be singular. At a Hopf 
bifurcation point,

det(2fx(x,a)@In) = 0 				                   (7)

@ indicates the bialternate product while In is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
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tasks very difficult. More details can be found in Kuznetsov and 
Govaerts [32-34].

Hopf bifurcations cause unwanted oscillatory behavior and limit 
cycles. The tanh activation function (where a control value u 
is replaced by ) (u tanh u / ε) is commonly used in neural nets 
and optimal control problems to eliminate spikes in the optimal 
control profile [35-38]. Hopf bifurcation points cause oscillatory 
behavior. Oscillations are similar to spikes, and the results in 
Sridhar demonstrate that the tanh factor also eliminates the Hopf 
bifurcation by preventing the occurrence of oscillations [39]. 
Sridhar explained with several examples how the activation 
factor involving the tanh function successfully eliminates the 
limit cycle causing Hopf bifurcation points [39]. This was 
because the tanh function increases the time period of the 
oscillatory behavior, which occurs in the form of a limit cycle 
caused by Hopf bifurcations. 

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)
Flores Tlacuahuaz et al developed a multiobjective nonlinear 
model predictive control (MNLMPC) method that is rigorous and 
does not involve weighting functions or additional constraints 
[30]. This procedure is used for performing the MNLMPC 
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tf being the final time value, and n the total number of objective 
variables and the control parameter. This MNLMPC procedure 
first solves the single objective optimal control problem 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 
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Pyomo is used for these calculations [31]. Here, the differential 
equations are converted to a Nonlinear Program (NLP) using the 

orthogonal collocation method The NLP is solved using IPOPT 
and confirmed as a global solution with BARON [32,33]. 

The steps of the algorithm are as follows 
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The subscript i is the index for each time step.
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various times.

3.	 Implement the first obtained control values 
4.	 Repeat steps 1 to 3 until there is an insignificant difference 

between the implemented and the first obtained value of 
the control variables or if the Utopia point is achieved. The 
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Results and Discussion
For the bifurcation analysis in model 1, both pθ  and zθ  were 
individually used as bifurcation parameters. When pθ  was 
used as a bifurcation parameter, two Hopf bifurcation points 
were found at ( , , )pzval pval θ  values of (2.128943 0.426793 
5.645178) and (4.230053 1.696697 6.052311). These Hopf 
bifurcation points are shown in Figure. 1a. Each of these Hopf 
bifurcation points result in a limit cycle which are shown in 
figures 1b and 1c. When pθ  was modified to tanh( )

1.115
p pθ θ  the hopf 

bifurcations disappear (Figure. 1d).

Figure 1a

Figure 1b

Figure 1c
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Figure 1d

When zθ  was used as a bifurcation parameter, two Hopf 
bifurcation points were found at (zval, pval, zθ  ) values of 
(2.696435 0.266904 5.951550) and (3.190589 2.102711 
5.604739) These Hopf bifurcation points are shown in Figure. 
1e. Each of these Hopf bifurcation points result in a limit cycle 
which are shown in figures 1f and 1g. When zθ  was modified to 

tanh( )
1.115

z zθ θ  the hopf bifurcations disappear (Figure. 1h). 

Figure 1e

Figure 1f

Figure 1g

Figure 1h

The MNLMPC calculations were performed using tanh( )
1.115

p pθ θ  
and tanh( )
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z zθ θ   as the control parameters. 
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This minimization resulted in the Utopia point (0). The first of 
the control variables is implemented, and the rest are discarded. 
The process is repeated until the difference between the first 
and second values of the control variables are the same. The 
MNLMPC control values of both pθ  and zθ  were 5 and 5. The 
zval and pval profiles are shown in Figures 1i and 1j.

In model 2, IEXT is the bifurcation parameter and a Hopf 
bifurcation point was found at (vval, mval, hval, nval, 2, IEXT) 
values of (5.345857 0.097257 0.406228 0.401784 9.779639). 
This is shown in Figure. 2a. The limit cycle produced by this 
Hopf bifurcation is shown in Figure. 2b. When IEXT is modified 
to tanh( )

1.5
EXT EXTI I  the Hopf Bifurcation point disappears.

Figure 2a

Figure 2b

For the MNLMPC calculations, 
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The multiobjective optimal control calculation involved a 
minimization of

0 0 0 0

2 2 2 2( ( ) 20) ( ( ) 20) ( ( ) 17.3647) ( ( ) 0)
i f i f i f i f

i i i i

t t t t t t t t
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.

tanh( )
1.5

EXT EXTI I  was used as the control parameter.

This minimization resulted in the Utopia point (0). The first of 
the control variables is implemented, and the rest are discarded. 
The process is repeated until the difference between the first 
and second values of the control variables are the same. The 
MNLMPC control value of IEXT is 1. The vval, hval and nval 
profiles for the MNLMPC calculations are shown in figures 2d 
and 2e. The mval value was 1 throughout.

Figure 2c

Figure 2d

Figure 2e

Both brain models show the presence of limit cycles causing 
Hopf bifurcations, which can be eliminated using the activation 
factor involving the tanh function, confirming the analysis 
of Sridhar(2024). In both cases, the MNLMPC calculations 
converge to the Utopia solution. 

Conclusions 
Multiobjective nonlinear model predictive control calculations 
were performed along with bifurcation analysis on two models 
involving brain dynamics. The bifurcation analysis revealed 
the existence of limit cycle causing Hopf bifurcation points, 
which are eliminated using an activation factor involving the 
tanh function. The multiojective nonlinear model predictive 
calculations converge to the Utopia point( the best possible 
solution) .in both models. 
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