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Abstract
In this paper we give approximations to the Mittag-Leffler functions in terms of elementary functions using different methods. This allowed 
us to establish a practical method we called integerization principle. This principle states that many fractional nonlinear oscillators may 
be solved by means of the solution to some integer-order Duffing oscillator equation. The accuracy of the obtained results is illustrated in 
concrete examples. Formulas for estimating the errors in the approximations are also provided.
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Introduction
Fractional calculus generalizes the differential and integral 
operators to non-integer orders, for this reason it is also called 
arbitrary order calculation. This idea is as old as calculus itself, 
but its development has been largely conditioned by the absence 
of a physical interpretation and convincing geometry and also 
by the numerous definition proposals. We could say that it did 
not have a real development until the second half of the 20th 
century, that is why we find here a classical and at the same time 
modern branch of mathematics [1-5].

Currently, a large number of articles are published on the subject, 
and we find applications in most of the sciences, this is because 
fractional operators are nonlocal operators, that is, what occurs 
at a point depends on an average over an interval containing 
the point, and this makes fractional calculus an exceptional tool 
for non-local phenomena such as ecological processes such 
as accumulation of metals, problems of population evolution, 

problems of radiation, economy, etc. They also play a very 
important role in relaxation processes such as those associated 
with viscoelastic materials [6-10].

In 1969, the Italian mathematician and physicist Michele Caputo 
gave a new definition derived from fractional order that allowed 
to interpret physically the initial conditions of the increasingly 
numerous applied problems. Caputo (1969) defined the fractional 
derivative as
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In 1974, the first international conference on Fractional Calculus 
was held in Connecticut, which served as a stimulus to numerous 
publications. The second conference took place in 1984 in 
Scotland, and the third in 1989 in Tokyo. Nowadays it is difficult 
to find a field of science or engineering that does not consider 
concepts of the Fractional Calculus, and every year there are 
several events that show it.
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Most nonlinear differential equations do not admit an analytical 
procedure that describe its solution. For this reason it is 
necessary to resort to numerical methods such as Runge Kutta, 
Newton, Euler etc., generally developed in software tools for 
applications in mathematics and engineering; these methods 
are a quite practical solution tool that allows approaching in an 
approximate way the solution of differential equations nonlinear; 
another resource contemplated when describing the solution of 
this type of equations refers to the qualitative information of 
the general behavior of the solutions that are actually obtains 
without solving these equations, basically through methods 
and geometric analysis. The interest of studying nonlinear 
differential equations lies mainly in that most physical systems, 
whether electrical, magnetic, biological, chemical, geological, 
economic, etc., present a non-linear behavior by nature; the 
procedure of linearizing the equations segments the knowledge 
about the behavior of systems around an equilibrium point, 
while the study of systems by means of nonlinear theory makes 
it possible to be aware of the behavior of the system at all points 
within which it is defined; another reason to study nonlinear 
systems and differential equations that describe them lies in the 
existence of natural phenomena and surprising mathematical 
representations that have no place in linear theory

Suppose we are given that
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The exact solutuion to the i.vp. (2) reads
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where Eα(-t
α) and Eα,2(-t

α) are the Mittag-Leffler functions. These 
functions are de�ned as follows:
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Our aim is to approximate the Mittag-Le er functions Eα(-t
α) and 

Eα,2(-t
α) by means of elementary functions. We also will apply 

the obtained results in the solution of fractional differential 
equations. The idea is to replace the fractional ode by means of 
some suitable integer-order oscillator. We will call this method 
the Integerization Principle.

Approximation of Mittag-Leffler Functions by Means of 
Elementary Functions
Assume that 1 <   2. Let us consider the Mittag-Le er function 
Eα(-t

α). To begin with, let α = 1.9. The function E1.9(-t
1.9) is 

plotted in Figure 1.

From that figure we see that the function E1.9(-t
1.9) behaves like 

a damped oscillator. So, we expect that this function may be 
approximated by means of the solution to some damped linear 
oscillator

( ) ( ) ( )2 2 2  0, 0   1 ' 0   0x x x x and xε ω ε+ + + = = =         (8)

Figure 1: The Function E1.9(-t
1.9)

Let us examine several possibilities for the approximation. 
Choose some positive number T, say T = 100:

First Method.
We look for suitable positive numbers " and w such that Eα(-t

α) ≈ 
xε,ω(t): = exp(-εt) cos(wt) for 0 ≤ t ≤ 100

We choose the numbers ε and w so that

, ,( , ) min max | ( ) ( ) |w t wF w E t x tα
ε α εε = − −

Making use of interpolation techniques based on Chebyshev 
approximation theories, we obtained the following experimental 
formula:
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so that
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Suitable values are presented in Table 1.

Table 1: The approximation Eα(-t
α) ≈ xε,ω(t): = exp(-εt) cos(wt) 

for 0 ≤ t ≤ 100
α ε w Error
1 1 0 0

1:05 0:944246 0:142712 0:04
1:1 0:888087 0:268428 0:062
1:15 0:831789 0:379059 0:08
1:2 0:775585 0:476261 0:093
1:3 0:664268 0:635963 0:105
1:4 0:55552 0:757079 0:11
1:5 0:4504 0:847047 0:01
1:55 0:399457 0:88224 0:094
1:6 0:3497 0:911754 0:09
1:65 0:301193 0:936147 0:08
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1:7 0:253991 0:955919 0:08
1:75 0:208135 0:971521 0:07
1:8 0:163662 0:983361 0:063
1:85 0:120596 0:991809 0:052
1:9 0:0789572 0:9972 0:039
1:95 0:0387563 0:999838 0:039

2 0 1 0:022

Conclusions
We gave approximate expression for the Mittag-Leffler 
functions in terms of elementary functions making use of several 
approaches. This allowed us to establish a method we called 
integerization principle. We demonstrated in concrete examples 
the effectiveness of the proposed method. We also may solve 
other fractional nonlinear oscillator using the integerization 
principle [16-19].
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