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ABSTRACT
While large language models have transformed how we interact with AI systems, they have a critical weakness: they confidently state false in- formation that 
sounds entirely plausible. This ”hallucination” problem has become a major barrier to using these models where accuracy matters most. Existing solutions 
either require retraining the entire model, add significant computational costs, or miss the root causes of why these hallucinations occur in the first place. 
We present Causal Guard, a new approach that combines causal reasoning with symbolic logic to catch and prevent hallucinations as they happen. Unlike 
previous methods that only check outputs after generation, our system understands the causal chain that leads to false statements and intervenes early in the 
process.

Causal Guard works through two complementary paths: one that traces causal relationships between what the model knows and what it generates, and 
an- other that checks logical consistency using auto- mated reasoning. Testing across twelve different benchmarks, we found that Causal Guard correctly 
identifies hallucinations 89.3% of the time while missing only 8.3% of actual hallucinations. More importantly, it reduces false claims by nearly 80% while 
keeping responses natural and helpful. The system performs especially well on complex reasoning tasks where multiple steps of logic are required. Because 
Causal Guard shows its reasoning process, it works well in sensitive areas like medical diagnosis or financial analysis where understanding why a decision 
was made matters as much as the decision itself.

Keywords: Large Language Models, False Information 
Detection, Understanding Causes, Neural-Logic Systems, Fact 
Checking, Explainable AI, Real-Time Verification

Introduction
If you’ve worked with ChatGPT or other large language models, 
you’ve likely encountered this problem: you ask about something 
specific, get a confident and detailed answer, then later dis- cover 
key details were completely wrong. This isn’t an occasional glitch 
it’s a fundamental limitation of how these systems work. While 
language models have become remarkably good at generating 
human-like text, they can’t reliably distinguish between actual 
facts and plausible- sounding information they create on the 
spot. This ”hallucination” problem has become a major obstacle 
to using these models in areas where accuracy matters most, like 
healthcare, legal analysis, or scientific research.

Research shows that even the best current models get facts wrong 
15-30% of the time, and this gets much worse when dealing with 
specialized knowledge or complex reasoning. What makes this 
particularly dangerous is that models often sound most confident 
when they’re wrong—a pattern researchers call ”confident 
hallucination.” When an AI system states incorrect information 
with apparent certainty, users have little way to tell truth from 
fiction, which can lead to serious consequences in applications 
where wrong answers matter.

Limitations of Current Approaches
Current approaches to reducing hallucinations fall into three 
main categories, each with important problems:
•	 Training based Methods try to teach models to be more 

careful during the training process itself, using techniques 
like constitutional AI, learning from human feedback, 
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or training on better knowledge sources. While these 
approaches can work, they’re expensive and time- 
consuming, requiring you to essentially retrain the entire 
model from scratch.

•	 Retrieval Augmented Approaches give models access 
to external information sources, like databases or web 
searches, to ground their responses in real data. The problem 
is that these systems often retrieve irrelevant or outdated 
information, and they struggle with questions that require 
putting multiple pieces of information together in novel 
ways.

•	 Posthoc Verification Systems check outputs after they’re 
generated, comparing them against fact-checking databases 
or looking for inconsistencies. While faster than retraining, 
these methods are like proofreading after the fact they miss 
the real reasons why hallucinations happen and often can’t 
tell clever lies from subtle truths.

The Case for Causal Symbolic Integration 
The main challenge in catching hallucinations is understanding 
why models make up false information and how to reliably stop 
it. Current approaches only look at the surface they check outputs 
after the fact instead of figuring out why the problems happen. 
We believe that effective hallucination prevention needs:
•	 Understanding Why Problems Happen figuring out the paths 

that lead to hallucination creation, including false patterns 
in training data, knowledge gaps, and reasoning failures.

•	 Symbolic reasoning leveraging formal logical systems to 
verify factual consistency and detect logical contradictions 
that neural models might miss.

•	 Real time Help providing immediate feedback during text 
creation rather than fixing problems after the fact to prevent 
errors from spreading.

•	 Explainable Decision-making offering transparent 
reasoning traces that enable users to understand and trust 
the verification process.

Our Contributions 
We introduce Causal Guard, a new system that combines neural 
networks with logical reasoning to address these challenges. Our 
key contributions include:
•	 Understanding Why Hallucinations Happen a clear way 

to model how input information, what the model knows, 
and false outputs are connected, allowing us to step in and 
prevent problems.

•	 Dual Path System a system that com- bines neural causal 
reasoning with symbolic logic checking, providing both 
statistical strength and logical accuracy.

•	 Counterfactual Evidence Generation a novel technique 
for generating alternative evidence scenarios to test 
the robustness of factual claims and identify potential 
hallucination triggers.

•	 Dynamic Knowledge Graph Construction real-time 
construction of context- specific factual networks that adapt 
to query-specific knowledge requirements and reasoning 
patterns.

•	 Thorough Testing wide-ranging experiments across 12 
different benchmarks showing better performance in 
catching hallucinations, reasoning accuracy, and keeping 
response quality high.

Our work shows a new way to build trustworthy AI systems 
by going beyond just checking for problems to actually 
understanding why these hallucinations happen in the first place. 
The resulting system is transparent, easy to under- stand, and 
works well for important applications were getting facts right 
really matters.

Related Work
Hallucination in Large Language Models
The phenomenon of hallucination in neural language models has 
been extensively studied across various contexts. Early work 
identified object hallucinations in image captioning establishing 
the foundation for understanding factual inconsistencies in 
neural generation [1]. This work was extended to text-only 
models, where hallucinations manifest as factual errors, logical 
inconsistencies, and unsupported claims [2,3]. Recent studies 
have grouped hallucinations into two main types: those that 
contradict source information and those that add unverifiable 
information. Research has further classified hallucinations by 
their root causes: gaps in knowledge, reasoning failures, and 
false patterns in training data. This understanding has helped 
develop targeted solutions.

Causal Inference in NLP
The application of causal inference to natural language processing 
has gained significant attention for addressing confounding 
factors and spurious correlations [4,5]. Research has used causal 
analysis to understand attention mechanisms in transformers 
while other work applied causal methods to improve model 
robustness and interpretability [6,7]. Recent work has explored 
causal approaches to hallucination mitigation. Research has 
proposed causal intervention strategies for reducing factual 
errors in dialogue systems and developed causal graphs for 
modeling knowledge dependencies in question-answering 
systems. How ever, these approaches focus on specific tasks 
and don’t provide the complete solution needed for detecting 
hallucinations in general.

Combining Neural Networks and Logic
The integration of neural and symbolic approaches has shown 
promise for combining the pattern recognition capabilities of 
neural net- works with the logical rigor of symbolic systems [8]. 
Research has demonstrated effective neurosymbolic integration 
for visual reasoning [9] and showed benefits for compositional 
question answering [10]. In the context of factual verification, 
work has explored symbolic reasoning for claim verification and 
integrated knowledge graphs with neural generation [11,12]. 
However, existing combined neural-symbolic approaches for 
LLMs have mainly focused on improving specific tasks rather 
than addressing hallucination problems in a complete way.

Measuring and Adjusting Confidence
Measuring how confident neural models should be has been 
explored through various approaches including Bayesian 
neural networks ensemble methods and confidence adjustment 
techniques [13-15]. Recent work has extended these methods 
to language models, introducing ways to capture uncertainty 
in meaning and language patterns. Research has looked at the 
relationship between how confident models are and how accurate 
they actually are finding that models are often overly confident 
when making false statements [16]. Other work has proposed 
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methods for improving confidence adjustment through training 
changes. Our work builds on these foundations while adding 
causal reasoning to provide better uncertainty measurement. 
Here, Z represents hidden factors that can muddy the waters 
things like biases in training data, limitations of the model 
architecture, or ambiguous contexts. Our goal is to figure out 
how the model’s knowledge state actually affects hallucination 
risk, while accounting for these confounding factors.

Causal Guard Architecture
CausalGuard works through two complementary approaches that 
check each other’s work. The first path uses causal reasoning to 
under- stand why certain responses might be problematic, while 
the second uses formal logic to verify whether statements are 
consistent with known facts. Figure 1 shows how these pieces 
fit together.

Figure 1: Causal Guard Architecture: A Neurosymbolic 
Framework Combining Causal Reasoning and Symbolic 
Verification for Real-Time Hallucination Detection. The Dual 
Path Design Enables Both Statistical Robustness and Logical 
Rigor.

Causal Reasoning Engine
The Causal Reasoning Engine models the generative process 
using a structural causal model (SCM):
K = fK(X, UK)					                 (3)
Y = fY (X, K, UY )				                (4)
H = fH(K, Z, Y, UH)				                (5)

where UK, UY, and UH represent unobserved noise variables. The 
engine performs three key operations:

K = Encoder(X) = BERTfine-tuned(X)		              (6)

Counterfactual  Evidence  Generation: For each claim in the 
generated response, we gen- erate counterfactual scenarios by 
intervening on the knowledge state:
K′ = do(K; intervention),	 Y ′ = fY (X, K′, UY)   	             (7)

If Y′ significantly differs from Y, this indicates potential 
hallucination vulnerability.

Causal Effect Estimation: We estimate the causal effect of 
knowledge gaps on hallucination probability using Pearl’s causal 
hierarchy: rem proving. It constructs a dynamic knowledge 
graph and applies formal reasoning rules.

Dynamic Knowledge Graph Construction: For each query, 
we build a context-specific knowledge graph G = (V, E) where 
vertices V represent entities and edges E represent relationships. 
The graph is constructed by:
•	 Entity extraction from input and generated response. 
•	 Relation mining from structured knowledge bases.
•	 Inference rule application for deriving implicit connections.

Logical Consistency Verification: Claims are translated into 
first-order logic predicates and verified against the knowledge 
graph:
CE(k → h) = P (H = 1|do(K = k))−P (H = 1|do(K = k0)) (8)

where k0 represents a baseline knowledge state.

Algorithm 1: Causal Hallucination Detection
Require: Input context X, Generated response Y, Knowledge 
base K

Ensure: Hallucination probability P (H|X, Y )

1.	 K ← EstimateKnowledgeState(X, K)
2.	 Claims ← Extract Claims(Y )
3.	 Pcausal ← 0
4.	 for each claim in Claims do
5.	 K′ ← Generate Counterfactual(K, claim)
6.	 Y ′ ← Generate Alternative(X, K′)
7.	 consistency ← Check Consistency(Y, Y ′)
8.	 Pcausal ← Pcausal + (1 − consistency)
9.	 end for return Pcausal/|Claims|

Symbolic Verification Network
The Symbolic Verification Network performs logical consistency 
checking using automated the 
Consistent(claim) = ¬∃ contradiction ∈ GU{claim}	             (9)

Theorem Proving 
We employ a custom theorem prover based on resolution with 
specific rules for temporal, numerical, and causal relationships.

Integration and Decision Making
The outputs from both engines are integrated through a learned 
fusion function:
Hallucination Score = α · Pcausal(H|X, Y ) 		            (10)
+ β · Psymbolic(H|G, Y ) 				               (11)
+ γ · Uncertainty(Y ) 				              (12)

where α, β, and γ are learned weights, and Uncertainty (Y) 
captures model-intrinsic confidence.

Algorithm 2: Symbolic Verification Process

Require: Claims C, Knowledge graph G = (V, E), Logical rules 
R
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Ensure: Verification results verified ⊆ C
1.	 verified ← ϕ
2.	 for each claim in C do
3.	 ϕ ← TranslateToFOL(claim)
4.	 premises ← ExtractPremises(G, ϕ)
5.	 proof ← TheoremProve(premises, ϕ, R)
6.	 if proof ̸= ϕ then
7.	 verified ← verified U{claim}
8.	 else contradictions ← Find Contradictions(G, ϕ)
9.	 if contradictions ̸= ϕ then
10.	 Mark claim as hallucination with evidence contradictions
11.	 end if end for return  verified

Real-time Help Strategy
CausalGuard works in real-time during text creation through 
three help strategies.
•	 Prevention Help 
	 High hallucination risk triggers alternative text generation 

paths using different sampling approaches.
•	 Correction Help 
	 Detected hallucinations are fixed through guided editing 

that keeps the text sounding natural.
•	 Explanation Help 
	 Users get clear explanations of detection decisions with 

supporting evidence and reasoning steps.

Experimental Setup
Datasets and Benchmarks
We evaluate CausalGuard across 12 diverse benchmarks 
covering different hallucination types and domains:
•	 Factual Accuracy: TruthfulQA, FEVER [17,18].
•	 Scientific Claims:  SciFact,  COVID-FACT  [19,20].
•	 Common Sense: CommonsenseQA, WinoGrande [21,22].
•	 Multihop Reasoning: HotpotQA, ComplexWebQuestions 

[23,24].
•	 Temporal Reasoning:  TempQuestions, TimeQA [25,26].
•	 Mathematical: GSM8K, MATH [27,28].

Each benchmark includes both the original test sets and augmented 
versions with synthetic hallucinations for controlled evaluation.

Baseline Systems
We compare against state-of-the-art hallucination detection and 
mitigation systems:
•	 Vanilla LLMs: GPT-3.5, GPT-4, LLaMA- 2-70B without 

intervention
•	 RAG Systems: DPR+BART, FiD [29,30].
•	 Fact-checking: RARR [31].
•	 Uncertainty-based:  SelfCheckGPT, Semantic Uncertainty 

[32,33].
•	 Chain-of-Verification: CoVe [34].

Evaluation Metrics
We use several different measures to check how well our system 
works:
•	 Detection Performance: Precision, Re-call, F1-score, and 

AUC for hallucination detection.
•	 Quality Preservation: BLEU, ROUGE, BERTScore for 

measuring response quality retention.
•	 Factual Accuracy: Percentage of factually correct claims 

in generated responses.

•	 Reasoning Quality: Logical consistency scores for multi-
step reasoning tasks.

•	 Efficiency: Latency overhead and computational cost 
analysis. 

•	 Explainability: Human evaluation of reasoning trace 
quality and trustworthiness.

Implementation Details
Causal Guard is implemented using PyTorch with the following 
specifications:
•	 Base Models: BERT-large for knowledge encoding, GPT-

3.5-turbo for generation.
•	 Knowledge Sources: Wikidata, Concept- Net, domain-

specific ontologies.
•	 Theorem Prover: Custom implementation based on E 

prover with temporal extensions.
•	 Hardware: NVIDIA A100 GPUs, 32GB memory per 

instance.
•	 Training: 100K annotated examples for fusion function 

learning.

Results and Analysis
Overall Performance
Table 1 shows the complete test results across all benchmarks. 
CausalGuard performs better than other methods in several 
important ways:
Detection Performance: CausalGuard achieves 89.3% precision 
and 91.7% recall, representing 4.3% and 11.4% improvements 
over the best baseline (Semantic Uncertainty). The F1- score 
of 90.5% demonstrates consistently high performance across 
different hallucination types.
•	 Quality Preservation:  With a BLEU score of 96.2%, 

CausalGuard maintains response quality significantly better 
than other methods. This indicates that our intervention 
strategies successfully correct factual errors while 
preserving linguistic fluency and coherence.

•	 Factual Accuracy: The system achieves 92.4% factual 
accuracy, reducing hallucination rate by 78.4% compared 
to vanilla GPT-4. This represents the strongest factual 
improvement among all evaluated methods.

Benchmark-Specific Analysis
Figure 1 shows performance across individual benchmarks, 
revealing several key insights:

Complex Reasoning Tasks: CausalGuard shows particularly 
strong performance on multi- hop reasoning benchmarks 
(HotpotQA: 94.2%, ComplexWebQuestions: 91.8%), where 
causal modeling proves especially valuable for tracking 
reasoning chains.

Scientific Domains: On SciFact and COVID-FACT, the system 
achieves 96.1% and 93.7% accuracy respectively, demonstrating 
effective handling of domain specific factual knowledge.

Temporal Reasoning:  Strong performance on TempQuestions 
(89.4%) and TimeQA (87.2%) validates the temporal logic 
extensions in our symbolic reasoning component.

Mathematical Reasoning: While showing improvement over 
baselines on GSM8K (83.5%) and MATH (79.2%), mathematical 
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Component Analysis
Table 2 shows what happens when we remove each part of our 
system to see how much each component helps:

Table 2: Component analysis showing how much each part 
helps

Configuration Prec. Rec.
CausalGuard (Full) 0.893 0.917
- Causal Reasoning 0.834 0.852
- Symbolic Verification 0.847 0.891
- Counterfactual Gen. 0.871 0.903
- Dynamic KG Const. 0.862 0.889
Neural Only 0.798 0.823
Symbolic Only 0.756 0.834

Qualitative Analysis
Reasoning Traces: CausalGuard provides in- terpretable 
reasoning traces that explain detec- tion decisions. Expert 
evaluation shows 87.3% of explanations are rated as helpful and 
accurate by What matters most: When we removed the causal 
reasoning component, precision dropped by 6.6%, showing 
it’s crucial for avoiding false alarms. The symbolic verification 
matters more for recall without it, we miss 2.8% more actual 
hallucinations. This confirms that both compo- domain 
specialists. 

Error Analysis: Manual analysis of remain- ing errors reveals 
three primary categories: (1) ambiguous factual claims requiring 
expert do- main knowledge (34%), (2) temporal inconsis- tencies 
in rapidly evolving topics (28%), and (3) nents are pulling their 
weight.

Counterfactual Scenarios Help: The ”what if” analysis 
component (counterfactual genera- tion) gives us a 2.5% boost 
in precision and 1.5% in recall. It turns out that imagining 
alternative scenarios really does help spot potential problems.

Context Specific knowledge Works: Building knowledge 
graphs tailored to each specific query rather than using static 
databases improves precision by 3.5%. This makes sense—
different questions need different kinds of background 
knowledge.

Benchmark Causal Guard Sem.Unc. Chain-Ver.
TruthfulQA 0.921 0.854 0.812
FEVER 0.934 0.867 0.834
SciFact 0.961 0.889 0.856
COVID-FACT 0.937 0.878 0.843
CommonsenseQA 0.903 0.841 0.807
WinoGrande 0.897 0.832 0.789
HotpotQA 0.942 0.823 0.789
ComplexWebQ 0.918 0.798 0.767
TempQuestions 0.894 0.812 0.778
TimeQA 0.872 0.789 0.743
GSM8K 0.835 0.756 0.721
MATH 0.792 0.734 0.698
Average F1 0.905 0.830 0.795

Figure 2: Performance comparison across 12 benchmarks (F1 
scores). CausalGuard consistently outperforms baselines across 
diverse tasks, with strong performance on complex reasoning 
and scientific domains. complex logical relationships not 
captured by current symbolic rules (38%).

User Study: A study with 150 domain experts across healthcare, 
finance, and education shows 91.2% prefer CausalGuard-
processed responses over baseline systems, with particular 
appreciation for transparency and confidence calibration.

Discussion
Implications for Trustworthy AI
CausalGuard represents a significant step toward trustworthy 
AI systems by addressing hallucinations through principled 
causal analysis rather than pattern matching. The neurosymbolic 
integration provides both statistical robustness and logical rigor, 
essential for high stakes applications.

Explainability
The system’s transparent reasoning traces enable users to 
understand and verify detection decisions, crucial for building 
trust in AI systems.

Generalizability
The causal framework is domain agnostic and can be adapted to 

reasoning remains the most challenging domain, indicating opportunities for future work.

Table 1: Performance comparison across hallucination detection benchmarks. Best results in bold, second-best underlined.

Method
Detection Performance Quality Efficiency

Prec. Rec. F1 BLEU Fact. Lat.(s) Cost($)
GPT-4 (Vanilla) 0.623 0.587 0.604 0.842 0.734 1.2 0.003
RAG + GPT-3.5 0.734 0.698 0.716 0.798 0.812 2.8 0.008
FactScore 0.781 0.756 0.768 0.823 0.834 3.4 0.012
SelfCheckGPT 0.692 0.743 0.717 0.856 0.798 4.1 0.015
Chain-of-Verif. 0.824 0.789 0.806 0.831 0.867 5.2 0.018
Semantic Uncert. 0.856 0.823 0.839 0.874 0.889 2.9 0.009
CausalGuard 0.893 0.917 0.905 0.962 0.924 2.1 0.007
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new domains by incorporating relevant knowledge sources and 
reasoning rules.

Scalability
The modular architecture allows for efficient parallel processing 
and can be scaled to handle high-volume production deployments.

Limitations and Future Work
Of course, no system is perfect, and ours has several limitations 
worth discussing.

Only as Good as our Sources
Causal Guard relies on external knowledge bases and databases. 
If these sources are incomplete, out- dated, or biased, those 
problems get passed along to our system. We’re essentially 
limited by the quality of human knowledge curation.

Speed Trade-offs
While faster than retraining entire models, our approach does 
slow things down adding about 75% to response time. For casual 
chatbots this might be fine, but for real- time applications it 
could be problematic.

Reasoning Gaps
Our logical rules work well for common types of reasoning, but 
they can miss highly specialized knowledge or novel forms of 
argumentation that would be obvious to do- main experts.

Moving Targets
In rapidly changing domains like current events or breaking 
news, our knowledge bases can quickly become outdated. The 
system works best with stable factual knowledge.

Broader Impact
The deployment of effective hallucination detection systems has 
significant societal implications.
•	 Positive Impacts: Reduced misinformation spread, 

improved reliability of AI-assisted decision making, and 
enhanced trust in AI systems for critical applications.

•	 Potential Risks: Over-reliance on automated systems, 
potential biases in knowledge sources, and the risk of false 
confidence in ”verified” information.

•	 Ethical Considerations: The system’s decisions should 
be auditable and contestable, with clear accountability 
mechanisms for critical applications. 

Conclusion
We’ve presented CausalGuard, a new approach to catching 
hallucinations in language models before they can cause 
problems. Instead of just checking outputs after they’re generated, 
our system tries to understand why models hallucinate in the first 
place and intervene early in the process. 

The key insight is that hallucinations aren’t random they happen 
for predictable reasons that we can detect and address. By 
combin- ing causal reasoning (understanding the chain of events 
that leads to false statements) with sym- bolic logic (checking 
whether statements make sense), CausalGuard catches nearly 
90% of hal- lucinations while keeping false alarms low. 

What makes this work practical is that it doesn’t require retraining 
models or dramati- cally slowing them down. The system can be 
added on top of existing models and explains its decisions, which 
is crucial for sensitive applica- tions like medical diagnosis or 
financial analysis. There’s still work to do. The system depends 
on having good knowledge sources, adds some computational 
overhead, and sometimes misses subtle forms of reasoning 
that humans excel at. We’re particularly interested in handling 
rapidly changing information and reducing the time it takes to 
verify claims. 

As AI systems become more common in high stakes decisions, 
catching and preventing hal- lucinations will become increasingly 
important. CausalGuard represents one step toward AI sys- tems 
that are not just powerful, but trustworthy. 
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