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ABSTRACT

While large language models have transformed how we interact with Al systems, they have a critical weakness: they confidently state false in- formation that
sounds entirely plausible. This “hallucination” problem has become a major barrier to using these models where accuracy matters most. Existing solutions
either require retraining the entire model, add significant computational costs, or miss the root causes of why these hallucinations occur in the first place.
We present Causal Guard, a new approach that combines causal reasoning with symbolic logic to catch and prevent hallucinations as they happen. Unlike
previous methods that only check outputs after generation, our system understands the causal chain that leads to false statements and intervenes early in the
process.

Causal Guard works through two complementary paths: one that traces causal relationships between what the model knows and what it generates, and
an- other that checks logical consistency using auto- mated reasoning. Testing across twelve different benchmarks, we found that Causal Guard correctly
identifies hallucinations 89.3% of the time while missing only 8.3% of actual hallucinations. More importantly, it reduces false claims by nearly 80% while
keeping responses natural and helpful. The system performs especially well on complex reasoning tasks where multiple steps of logic are required. Because
Causal Guard shows its reasoning process, it works well in sensitive areas like medical diagnosis or financial analysis where understanding why a decision
was made matters as much as the decision itself.

Keywords: Large Language Models, False Information Research shows thateven the best current models get facts wrong

Detection, Understanding Causes, Neural-Logic Systems, Fact
Checking, Explainable Al, Real-Time Verification

Introduction

If you’ve worked with ChatGPT or other large language models,
you’ve likely encountered this problem: you ask about something
specific, get a confident and detailed answer, then later dis- cover
key details were completely wrong. This isn’t an occasional glitch
it’s a fundamental limitation of how these systems work. While
language models have become remarkably good at generating
human-like text, they can’t reliably distinguish between actual
facts and plausible- sounding information they create on the
spot. This “hallucination” problem has become a major obstacle
to using these models in areas where accuracy matters most, like
healthcare, legal analysis, or scientific research.

15-30% of the time, and this gets much worse when dealing with
specialized knowledge or complex reasoning. What makes this
particularly dangerous is that models often sound most confident
when they’re wrong—a pattern researchers call “confident
hallucination.” When an Al system states incorrect information
with apparent certainty, users have little way to tell truth from
fiction, which can lead to serious consequences in applications
where wrong answers matter.

Limitations of Current Approaches

Current approaches to reducing hallucinations fall into three

main categories, each with important problems:

*  Training based Methods try to teach models to be more
careful during the training process itself, using techniques
like constitutional Al, learning from human feedback,
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or training on better knowledge sources. While these
approaches can work, they’re expensive and time-
consuming, requiring you to essentially retrain the entire
model from scratch.

e Retrieval Augmented Approaches give models access
to external information sources, like databases or web
searches, to ground their responses in real data. The problem
is that these systems often retrieve irrelevant or outdated
information, and they struggle with questions that require
putting multiple pieces of information together in novel
ways.

*  Posthoc Verification Systems check outputs after they’re
generated, comparing them against fact-checking databases
or looking for inconsistencies. While faster than retraining,
these methods are like proofreading after the fact they miss
the real reasons why hallucinations happen and often can’t
tell clever lies from subtle truths.

The Case for Causal Symbolic Integration

The main challenge in catching hallucinations is understanding

why models make up false information and how to reliably stop

it. Current approaches only look at the surface they check outputs
after the fact instead of figuring out why the problems happen.

We believe that effective hallucination prevention needs:

e Understanding Why Problems Happen figuring out the paths
that lead to hallucination creation, including false patterns
in training data, knowledge gaps, and reasoning failures.

*  Symbolic reasoning leveraging formal logical systems to
verify factual consistency and detect logical contradictions
that neural models might miss.

*  Real time Help providing immediate feedback during text
creation rather than fixing problems after the fact to prevent
errors from spreading.

e Explainable  Decision-making  offering  transparent
reasoning traces that enable users to understand and trust
the verification process.

Our Contributions

We introduce Causal Guard, a new system that combines neural

networks with logical reasoning to address these challenges. Our

key contributions include:

*  Understanding Why Hallucinations Happen a clear way
to model how input information, what the model knows,
and false outputs are connected, allowing us to step in and
prevent problems.

e Dual Path System a system that com- bines neural causal
reasoning with symbolic logic checking, providing both
statistical strength and logical accuracy.

*  Counterfactual Evidence Generation a novel technique
for generating alternative evidence scenarios to test
the robustness of factual claims and identify potential
hallucination triggers.

* Dynamic Knowledge Graph Construction real-time
construction of context- specific factual networks that adapt
to query-specific knowledge requirements and reasoning
patterns.

e Thorough Testing wide-ranging experiments across 12
different benchmarks showing better performance in
catching hallucinations, reasoning accuracy, and keeping
response quality high.

Our work shows a new way to build trustworthy Al systems
by going beyond just checking for problems to actually
understanding why these hallucinations happen in the first place.
The resulting system is transparent, easy to under- stand, and
works well for important applications were getting facts right
really matters.

Related Work

Hallucination in Large Language Models

The phenomenon of hallucination in neural language models has
been extensively studied across various contexts. Early work
identified object hallucinations in image captioning establishing
the foundation for understanding factual inconsistencies in
neural generation [1]. This work was extended to text-only
models, where hallucinations manifest as factual errors, logical
inconsistencies, and unsupported claims [2,3]. Recent studies
have grouped hallucinations into two main types: those that
contradict source information and those that add unverifiable
information. Research has further classified hallucinations by
their root causes: gaps in knowledge, reasoning failures, and
false patterns in training data. This understanding has helped
develop targeted solutions.

Causal Inference in NLP

The application of causal inference to natural language processing
has gained significant attention for addressing confounding
factors and spurious correlations [4,5]. Research has used causal
analysis to understand attention mechanisms in transformers
while other work applied causal methods to improve model
robustness and interpretability [6,7]. Recent work has explored
causal approaches to hallucination mitigation. Research has
proposed causal intervention strategies for reducing factual
errors in dialogue systems and developed causal graphs for
modeling knowledge dependencies in question-answering
systems. How ever, these approaches focus on specific tasks
and don’t provide the complete solution needed for detecting
hallucinations in general.

Combining Neural Networks and Logic

The integration of neural and symbolic approaches has shown
promise for combining the pattern recognition capabilities of
neural net- works with the logical rigor of symbolic systems [8].
Research has demonstrated effective neurosymbolic integration
for visual reasoning [9] and showed benefits for compositional
question answering [10]. In the context of factual verification,
work has explored symbolic reasoning for claim verification and
integrated knowledge graphs with neural generation [11,12].
However, existing combined neural-symbolic approaches for
LLMs have mainly focused on improving specific tasks rather
than addressing hallucination problems in a complete way.

Measuring and Adjusting Confidence

Measuring how confident neural models should be has been
explored through various approaches including Bayesian
neural networks ensemble methods and confidence adjustment
techniques [13-15]. Recent work has extended these methods
to language models, introducing ways to capture uncertainty
in meaning and language patterns. Research has looked at the
relationship between how confident models are and how accurate
they actually are finding that models are often overly confident
when making false statements [16]. Other work has proposed
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methods for improving confidence adjustment through training
changes. Our work builds on these foundations while adding
causal reasoning to provide better uncertainty measurement.
Here, Z represents hidden factors that can muddy the waters
things like biases in training data, limitations of the model
architecture, or ambiguous contexts. Our goal is to figure out
how the model’s knowledge state actually affects hallucination
risk, while accounting for these confounding factors.

Causal Guard Architecture

CausalGuard works through two complementary approaches that
check each other’s work. The first path uses causal reasoning to
under- stand why certain responses might be problematic, while
the second uses formal logic to verify whether statements are
consistent with known facts. Figure 1 shows how these pieces
fit together.

User Query X

Base LLM Generation

Generated Response Y

Real-time Intervention

[Svmholic Verification Network}

Dynamic Knowledge Graph
Theorem Proving

Verified Response

Figure 1: Causal Guard Architecture: A Neurosymbolic
Framework Combining Causal Reasoning and Symbolic
Verification for Real-Time Hallucination Detection. The Dual
Path Design Enables Both Statistical Robustness and Logical
Rigor.

Causal Reasoning Engine
The Causal Reasoning Engine models the generative process
using a structural causal model (SCM):

K = £ (X, UK) 3)
Y=f (X,K,UY) @)
H=f(K,ZY, UH) )

where U, U, and U, represent unobserved noise variables. The
engine performs three key operations:

K = Encoder(X) = BERT, .. d(X) (6)

Counterfactual Evidence Generation: For each claim in the
generated response, we gen- erate counterfactual scenarios by
intervening on the knowledge state:

K’=do(K; intervention), Y'=f (X,K’, U,) @)

If Y’ significantly differs from Y, this indicates potential
hallucination vulnerability.

Causal Effect Estimation: We estimate the causal effect of
knowledge gaps on hallucination probability using Pearl’s causal
hierarchy: rem proving. It constructs a dynamic knowledge
graph and applies formal reasoning rules.

Dynamic Knowledge Graph Construction: For each query,
we build a context-specific knowledge graph G = (V, E) where
vertices V represent entities and edges E represent relationships.
The graph is constructed by:

*  Entity extraction from input and generated response.

*  Relation mining from structured knowledge bases.

* Inference rule application for deriving implicit connections.

Logical Consistency Verification: Claims are translated into
first-order logic predicates and verified against the knowledge
graph:

CE(k — h) =P (H = 1|do(K = k))—P (H = 1|do(K = k)) (8)

where k represents a baseline knowledge state.

Algorithm 1: Causal Hallucination Detection
Require: Input context X, Generated response Y, Knowledge
base K

Ensure: Hallucination probability P (H|X, Y )

K « EstimateKnowledgeState(X, K)
Claims «— Extract Claims(Y )

Pcausal < 0

for each claim in Claims do

K’ « Generate Counterfactual(K, claim)
Y ' «— Generate Alternative(X, K")
consistency «— Check Consistency(Y, Y ')
+ (1 — consistency)
/|Claims|

causal causal

end for return P

causal

A BRIl i

Symbolic Verification Network

The Symbolic Verification Network performs logical consistency
checking using automated the

Consistent(claim) = —3 contradiction € GU {claim} )

Theorem Proving
We employ a custom theorem prover based on resolution with
specific rules for temporal, numerical, and causal relationships.

Integration and Decision Making
The outputs from both engines are integrated through a learned
fusion function:

Hallucination Score =a - P_ (HIX,Y") (10)
+ B ' Psymbolic(H|G’ Y ) (1 1)
+ v - Uncertainty(Y ) (12)

where o, B, and y are learned weights, and Uncertainty (Y)
captures model-intrinsic confidence.

Algorithm 2: Symbolic Verification Process

Require: Claims C, Knowledge graph G = (V, E), Logical rules
R
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Ensure: Verification results verified & C

verified « ¢

for each claim in C do

¢ <« TranslateToFOL(claim)

premises «— ExtractPremises(G, ¢)

proof «— TheoremProve(premises, ¢, R)

if proof~ ¢ then

verified « verified U{claim}

else contradictions «— Find Contradictions(G, ¢)
. if contradictions ~ ¢ then

0. Mark claim as hallucination with evidence contradictions
1. end if end for return verified

SEYX_NAn b=

Real-time Help Strategy

CausalGuard works in real-time during text creation through

three help strategies.

*  Prevention Help
High hallucination risk triggers alternative text generation
paths using different sampling approaches.

e Correction Help
Detected hallucinations are fixed through guided editing
that keeps the text sounding natural.

*  Explanation Help
Users get clear explanations of detection decisions with
supporting evidence and reasoning steps.

Experimental Setup

Datasets and Benchmarks

We evaluate CausalGuard across 12 diverse benchmarks

covering different hallucination types and domains:

e Factual Accuracy: TruthfulQA, FEVER [17,18].

e Scientific Claims: SciFact, COVID-FACT [19,20].

e Common Sense: CommonsenseQA, WinoGrande [21,22].

*  Multihop Reasoning: HotpotQA, ComplexWebQuestions
[23,24].

*  Temporal Reasoning: TempQuestions, TimeQA [25,26].

*  Mathematical: GSM8K, MATH [27,28].

Each benchmark includes both the original test sets and augmented
versions with synthetic hallucinations for controlled evaluation.

Baseline Systems

We compare against state-of-the-art hallucination detection and

mitigation systems:

e Vanilla LLMs: GPT-3.5, GPT-4, LLaMA- 2-70B without
intervention

*  RAG Systems: DPR+BART, FiD [29,30].

*  Fact-checking: RARR [31].

e Uncertainty-based: SelfCheckGPT, Semantic Uncertainty
[32,33].

e Chain-of-Verification: CoVe [34].

Evaluation Metrics

We use several different measures to check how well our system

works:

e Detection Performance: Precision, Re-call, F1-score, and
AUC for hallucination detection.

*  Quality Preservation: BLEU, ROUGE, BERTScore for
measuring response quality retention.

e Factual Accuracy: Percentage of factually correct claims
in generated responses.

e Reasoning Quality: Logical consistency scores for multi-
step reasoning tasks.

e Efficiency: Latency overhead and computational cost
analysis.

e Explainability: Human evaluation of reasoning trace
quality and trustworthiness.

Implementation Details

Causal Guard is implemented using PyTorch with the following

specifications:

*  Base Models: BERT-large for knowledge encoding, GPT-
3.5-turbo for generation.

* Knowledge Sources: Wikidata, Concept- Net, domain-
specific ontologies.

e Theorem Prover: Custom implementation based on E
prover with temporal extensions.

e Hardware: NVIDIA A100 GPUs, 32GB memory per
instance.

e Training: 100K annotated examples for fusion function
learning.

Results and Analysis

Overall Performance

Table 1 shows the complete test results across all benchmarks.

CausalGuard performs better than other methods in several

important ways:

Detection Performance: CausalGuard achieves 8§9.3% precision

and 91.7% recall, representing 4.3% and 11.4% improvements

over the best baseline (Semantic Uncertainty). The F1- score
of 90.5% demonstrates consistently high performance across
different hallucination types.

*  Quality Preservation: With a BLEU score of 96.2%,
CausalGuard maintains response quality significantly better
than other methods. This indicates that our intervention
strategies successfully correct factual errors while
preserving linguistic fluency and coherence.

e Factual Accuracy: The system achieves 92.4% factual
accuracy, reducing hallucination rate by 78.4% compared
to vanilla GPT-4. This represents the strongest factual
improvement among all evaluated methods.

Benchmark-Specific Analysis
Figure 1 shows performance across individual benchmarks,
revealing several key insights:

Complex Reasoning Tasks: CausalGuard shows particularly
strong performance on multi- hop reasoning benchmarks
(HotpotQA: 94.2%, ComplexWebQuestions: 91.8%), where
causal modeling proves especially valuable for tracking
reasoning chains.

Scientific Domains: On SciFact and COVID-FACT, the system
achieves 96.1% and 93.7% accuracy respectively, demonstrating
effective handling of domain specific factual knowledge.

Temporal Reasoning: Strong performance on TempQuestions
(89.4%) and TimeQA (87.2%) validates the temporal logic
extensions in our symbolic reasoning component.

Mathematical Reasoning: While showing improvement over
baselines on GSMS8K (83.5%) and MATH (79.2%), mathematical
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reasoning remains the most challenging domain, indicating opportunities for future work.

Table 1: Performance comparison across hallucination detection benchmarks. Best results in bold, second-best underlined.

Method Detection Performance Quality Efficiency
Prec. Rec. F1 BLEU Fact. Lat.(s) Cost($)
GPT-4 (Vanilla) 0.623 0.587 0.604 0.842 0.734 1.2 0.003
RAG + GPT-3.5 0.734 0.698 0.716 0.798 0.812 2.8 0.008
FactScore 0.781 0.756 0.768 0.823 0.834 34 0.012
SelfCheckGPT 0.692 0.743 0.717 0.856 0.798 4.1 0.015
Chain-of-Verif. 0.824 0.789 0.806 0.831 0.867 52 0.018
Semantic Uncert. 0.856 0.823 0.839 0.874 0.889 2.9 0.009
CausalGuard 0.893 0.917 0.905 0.962 0.924 2.1 0.007
Component Analysis Benchmark Causal Guard | Sem.Unc. | Chain-Ver.
Table 2 shows what happens when we remove each part of our
system to see how much each component helps: Wil 0221 0.:8>4 0:612
FEVER 0.934 0.867 0.834
Table 2: Component analysis showing how much each part | SciFact 0.961 0.889 0.856
helps COVID-FACT 0.937 0.878 0.843
Configuration Prec. Rec. CommonsenseQA 0.903 0.841 0.807
CausalGuard (Full) 0.893 0.917 G 0.897 0.832 0.789
- Causal Reasoning 0.834 0.852 HotpotQA 0.942 0.823 0.789
- Symbolic Verification 0.847 0.891 ComplexWebQ 0.918 0.798 0.767
- Counterfactual Gen. 0.871 0.903 TempQuestions 0.894 0.812 0.778
- Dynamic KG Const. 0.862 0.889 TimeQA 0.872 0.789 0.743
Moz, Ol 0.798 0.823 GSMSK 0.835 0.756 0.721
Symbolic Only 0.756 0.834 MATH 0.792 0.734 0.698
Qualitative Analysis Average F1 0.905 0.830 0.795

Reasoning Traces: CausalGuard provides in- terpretable
reasoning traces that explain detec- tion decisions. Expert
evaluation shows 87.3% of explanations are rated as helpful and
accurate by What matters most: When we removed the causal
reasoning component, precision dropped by 6.6%, showing
it’s crucial for avoiding false alarms. The symbolic verification
matters more for recall without it, we miss 2.8% more actual
hallucinations. This confirms that both compo- domain
specialists.

Error Analysis: Manual analysis of remain- ing errors reveals
three primary categories: (1) ambiguous factual claims requiring
expert do- main knowledge (34%), (2) temporal inconsis- tencies
in rapidly evolving topics (28%), and (3) nents are pulling their
weight.

Counterfactual Scenarios Help: The “what if” analysis
component (counterfactual genera- tion) gives us a 2.5% boost
in precision and 1.5% in recall. It turns out that imagining
alternative scenarios really does help spot potential problems.

Context Specific knowledge Works: Building knowledge
graphs tailored to each specific query rather than using static
databases improves precision by 3.5%. This makes sense—
different questions need different kinds of background
knowledge.

Figure 2: Performance comparison across 12 benchmarks (F1
scores). CausalGuard consistently outperforms baselines across
diverse tasks, with strong performance on complex reasoning
and scientific domains. complex logical relationships not
captured by current symbolic rules (38%).

User Study: A study with 150 domain experts across healthcare,
finance, and education shows 91.2% prefer CausalGuard-
processed responses over baseline systems, with particular
appreciation for transparency and confidence calibration.

Discussion

Implications for Trustworthy Al

CausalGuard represents a significant step toward trustworthy
Al systems by addressing hallucinations through principled
causal analysis rather than pattern matching. The neurosymbolic
integration provides both statistical robustness and logical rigor,
essential for high stakes applications.

Explainability

The system’s transparent reasoning traces enable users to
understand and verify detection decisions, crucial for building
trust in Al systems.

Generalizability
The causal framework is domain agnostic and can be adapted to
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new domains by incorporating relevant knowledge sources and
reasoning rules.

Scalability
The modular architecture allows for efficient parallel processing
and can be scaled to handle high-volume production deployments.

Limitations and Future Work
Of course, no system is perfect, and ours has several limitations
worth discussing.

Only as Good as our Sources

Causal Guard relies on external knowledge bases and databases.
If these sources are incomplete, out- dated, or biased, those
problems get passed along to our system. We’re essentially
limited by the quality of human knowledge curation.

Speed Trade-offs

While faster than retraining entire models, our approach does
slow things down adding about 75% to response time. For casual
chatbots this might be fine, but for real- time applications it
could be problematic.

Reasoning Gaps

Our logical rules work well for common types of reasoning, but
they can miss highly specialized knowledge or novel forms of
argumentation that would be obvious to do- main experts.

Moving Targets

In rapidly changing domains like current events or breaking
news, our knowledge bases can quickly become outdated. The
system works best with stable factual knowledge.

Broader Impact

The deployment of effective hallucination detection systems has

significant societal implications.

* Positive Impacts: Reduced misinformation spread,
improved reliability of Al-assisted decision making, and
enhanced trust in Al systems for critical applications.

e Potential Risks: Over-reliance on automated systems,
potential biases in knowledge sources, and the risk of false
confidence in “verified” information.

e Ethical Considerations: The system’s decisions should
be auditable and contestable, with clear accountability
mechanisms for critical applications.

Conclusion

We’ve presented CausalGuard, a new approach to catching
hallucinations in language models before they can cause
problems. Instead of just checking outputs after they’re generated,
our system tries to understand why models hallucinate in the first
place and intervene early in the process.

The key insight is that hallucinations aren’t random they happen
for predictable reasons that we can detect and address. By
combin- ing causal reasoning (understanding the chain of events
that leads to false statements) with sym- bolic logic (checking
whether statements make sense), CausalGuard catches nearly
90% of hal- lucinations while keeping false alarms low.

What makes this work practical is that it doesn’t require retraining
models or dramati- cally slowing them down. The system can be
added on top of existing models and explains its decisions, which
is crucial for sensitive applica- tions like medical diagnosis or
financial analysis. There’s still work to do. The system depends
on having good knowledge sources, adds some computational
overhead, and sometimes misses subtle forms of reasoning
that humans excel at. We’re particularly interested in handling
rapidly changing information and reducing the time it takes to
verify claims.

As Al systems become more common in high stakes decisions,
catching and preventing hal- lucinations will become increasingly
important. CausalGuard represents one step toward Al sys- tems
that are not just powerful, but trustworthy.
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