

Multisystem Inflammatory Syndrome in Children – The Importance of Monitoring these Patients for the Occurrence of Long-Term Sequelae

Rosa Amorim-Figueiredo

Dona Estefânia Hospital, São José Local Health Unit, Lisbon, Portugal Rua Jacinta Marto 8A, 1169-045 Lisboa, Portugal

***Corresponding author**

Rosa Amorim-Figueiredo, Dona Estefânia Hospital, São José Local Health Unit, Lisbon, Portugal Rua Jacinta Marto 8A, 1169-045 Lisboa, Portugal.

Received: December 29, 2025; **Accepted:** January 06, 2026; **Published:** January 12, 2026

ABSTRACT

Multisystem inflammatory syndrome in children is a relatively recent condition related to SARS-CoV-2 infection. Although short and mid-term sequelae have been previously addressed, long-term sequelae persisting several years after the disease are still unknown.

Keywords: MIS-C Associated with COVID-19, Multisystem Inflammatory Syndrome in Children, PIMS-TS, Pediatric Inflammatory Multisystem Syndrome

Introduction

Multisystem inflammatory syndrome in children (MIS-C) is a rare illness that appeared after the beginning of the COVID-19 pandemic [1]. It is caused by an amplified immune response that happens in response to SARS-CoV-2 virus at least 2 weeks after the viral infection has occurred [2].

The clinical picture is characterized by fever, increased inflammatory markers, and multisystem organ involvement [3]. Gastroenterological, mucocutaneous, cardiac and hematologic affection is very common [4]. Respiratory, renal or neurologic involvement occurs in smaller percentages [4]. A differential diagnosis with Kawasaki disease and toxic shock syndrome is mandatory [3].

Although vaccination against SARS-CoV-2 virus has been shown to be protective against the occurrence of this potentially fatal illness, some patients who survived to MIS-C might have sequelae that persist several years after the disease has occurred [3].

Body of the commentary

Although some follow-up studies have been performed trying to address short and mid-term sequelae in MIS-C patients, long-term sequelae are still unknown, as well as their impact on the patients' lives [5-7].

The most common heart changes at 6–24 months of follow-up are tricuspid regurgitation (nearly 50% of the patients) and mitral regurgitation (nearly 35% of the patients) [8]. Although left ventricular ejection fraction (LVEF) seems to return to normal in nearly all patients at follow-up, cardiac magnetic resonance (CMR) changes compatible with myocardial fibrosis occur in 10–15% of MIS-C patients six months after the acute illness [8-10]. Further studies are needed to understand if CMR findings become persistent over the years, since myocardial fibrosis is related to an increased risk of ventricular arrhythmias and, consequently, sudden death [11].

Some respiratory symptoms are reported at follow-up, such as dyspnoea on exertion and asthenia, but they tend to improve at 12 months (15–20% of the patients) compared to six months of follow-up (25–30% of the patients) [6]. Almost all MIS-C patients show normal diffusing capacity of the lungs for carbon monoxide (DLCO) and no changes at spirometry or plethysmography seem to occur at six months of follow-up [5].

Citation: Rosa Amorim-Figueiredo. Multisystem Inflammatory Syndrome in Children – The Importance of Monitoring these Patients for the Occurrence of Long-Term Sequelae. Open Access J Ped Res. 2026. 3(1): 1-2. DOI: doi.org/10.61440/OAJPR.2026.v3.25

Acute kidney injury occurs in a significant percentage of the cases at admission (25–30%) [6,12]. However, blood creatinine level has been shown to normalize in all patients at six months of follow-up [5,6].

Of the patients with severe disease, requiring intensive care, the majority (nearly 60%) reported physical complaints, such as fatigue (40%), headaches (nearly 30%), and decreased exercise tolerance (nearly 20%) at 12 months of follow-up [7].

Psychological problems were reported in nearly 30% at six months of follow-up and in nearly 20% at 12 months of follow-up [7,13].

Conclusion

MIS-C can leave clinical sequelae with unknown long-term repercussions. Although this is a rare condition, prevented by the SARS-CoV-2 vaccine, it is important not to forget the patients who suffered from this illness in the past, since they might have sequelae that are important to address and treat, whenever possible.

References

1. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. *New England Journal of Medicine*. 2020. 383. 334-346.
2. Scaltrito F, Grimaldi MT, Tolfa G, De Benedetto R, Adduce D, et al. Multisystem Inflammatory Syndrome in Children (MIS-C): a clinical and research overview in the framework of a personalized medicine approach. *Global Pediatrics*. 2025; 100313: 1-26.
3. Le Marchand C, Singson JRC, Clark A, Shah D, Wong M, et al. Multisystem inflammatory syndrome in children (MIS-C) cases by vaccination status in California. *Vaccine*. 2025. 43. 1-5.
4. Penna M, Pupa L, Lee G, Kim SJ. Skin manifestations and related clinical characteristics of multisystem inflammatory syndrome in children: A descriptive retrospective cohort study at Texas Children's Hospital. *JAAD Int*. 2025. 18. 122-127.
5. Penner J, Abdel-Mannan O, Grant K, Maillard S, Kucera F, et al. 6-month multidisciplinary follow-up and outcomes of patients with paediatric inflammatory multisystem syndrome (PIMS-TS) at a UK tertiary paediatric hospital: a retrospective cohort study. *Lancet Child Adolesc Health*. 2021. 5: 473-482.
6. D'Auria E, Bova SM, Dallapiccola AR, De Santis R, Leone A, et al. Long-term health outcome and quality of life in children with multisystem inflammatory syndrome: findings from multidisciplinary follow-up at an Italian tertiary-care paediatric hospital. *Eur J Pediatr*. 2024. 183: 4885-4895.
7. Seijbel TC, Hoste L, Buysse CMP, Dulfer K, Haerynck F, et al. Multidimensional 1-Year Outcomes After Intensive Care Admission for Multisystem Inflammatory Syndrome in Children. *Crit Care Explor* 2025. 7: e1213.
8. Jaxybayeva I, Boranbayeva R, Bulegenova M, Urazalieva N, Gerein V, et al. Long-term outcomes and immune profiling in children with multisystem inflammatory syndrome (MIS-C). *Acta Biomedica*. 2023. 94: 1-13.
9. Anagnostopoulou A, Dourdouna MM, Loukopoulos S, Mpourazani E, Poulakis M, et al. Longitudinal Cardiac Evaluation of Children with Multisystem Inflammatory Syndrome (MIS-C) Following COVID-19 by Conventional and Speckle-Tracking Echocardiography. *Pediatr Cardiol*. 2024. 45: 1110-1119.
10. Zimmerman D, Shwayder M, Souza A, Su JA, Votava-Smith J, et al. Cardiovascular Follow-up of Patients Treated for MIS-C. *Pediatrics*. 2023. 152: 1-10.
11. Fu B, Lian X, Huang H, Long T, Yang J, et al. Myocardial fibrosis predicts sudden cardiac death in patients with hypertrophic cardiomyopathy after cardiac electronic device implantation: Insights from cardiovascular magnetic resonance imaging. *Heart Rhythm O2*. 2025.
12. Tripathi AK, Pilania RK, Bhatt GC, Atlani M, Kumar A, et al. Acute kidney injury following multisystem inflammatory syndrome associated with SARS-CoV-2 infection in children: a systematic review and meta-analysis. *Pediatric Nephrology*. 2023. 38: 357-370.
13. Zuccotti G, Calcaterra V, Mannarino S, D'Auria E, Bova SM, et al. Six-month multidisciplinary follow-up in multisystem inflammatory syndrome in children: An Italian single-center experience. *Front Pediatr*. 2023. 10: 1-14.