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ABSTRACT

An accurate estimation of the COVID-19 case fatality rate (CFR) is crucial for understanding the severity of the disease, forecasting healthcare demands,
and evaluating its impact on large populations. However, this metric is often distorted by underreporting and delayed outcomes. In this study, we present
a probabilistic model that captures the temporal dynamics of the COVID-19 pandemic and provides corrected estimates of the case fatality rate. The
model incorporates transition probabilities between disease states to simu- late the evolution of infections, recoveries, and deaths. It explicitly accounts for
asymptomatic, mild/moderate, and severe cases, enabling the estimation of undiagnosed infections within the population. We validate the model by fitting
it to official data from medium-sized cities, major metropolitan areas, and medium-sized countries, covering populations ranging from a few million to tens
of millions.

Based on the inferred proportion of undiagnosed cases, we compute corrected case fatality rates, which range from 0.33% = 0.02% to 1.14% = 0.07%.
Remarkably, these values exhibit a degree of universality, appearing largely independent of geographic, social, or demographic factors. Our results are
consistent with independent seroprevalence studies and randomized testing, offering a refined understanding of COVID-19 fatality metrics. Additionally, the
model provides estimates for the number of severe cases, ICU demand, and the true number of infections, making it a versatile tool for pandemic response
planning. Beyond COVID-19, the proposed probabilistic framework is adaptable to future infectious disease outbreaks characterized by significant data
incompleteness and reporting biases.
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a crucial role in confined spaces such as airplanes, restaurants,
and other enclosed environments. As with previous pandemics,
non-pharmaceutical interventions such as isolation, social

Introduction distancing, and lockdowns proved essential in containing the

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the virus responsible for the coronavirus disease
(COVID-19). It first emerged in late 2019 in Wuhan, China,
likely crossing from animal hosts to humans through an as-yet
undetermined mechanism. By March 2020, the disease had
spread globally and was declared a pandemic by the World
Health Organization (WHO). SARS-CoV-2 is known to cause a
broad spectrum of symptoms, primarily affecting the respiratory
system and it spreads through respiratory droplets, contaminated
surfaces, and airborne particles (10). This airborne route plays

virus. However, these measures also led to significant social,
economic, and political consequences worldwide [1-15]

Since the beginning of the pandemic, public health authorities
and governments have made continuous efforts to monitor
infections, manage healthcare resources, and estimate the true
impact of COVID-19. Mathematical modeling has played a
pivotal role in supporting these efforts. Classical epidemiological
models, such as the Susceptiblelnfectious-Recovered (SIR)
framework introduced by Kermack and McKendrick in 1927,
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and its extensions (SEIR and others) have been widely used
to forecast the evolution of the pandemic, estimate healthcare
demands, and assess the impact of mitigation strategies [16-27].

Despite their utility, SIR-based models often rely on
simplifying assumptions, treating populations as homogeneous
and processes as deterministic. These limitations become
particularly relevant when addressing key epidemiological
metrics such as the case fatality rate (CFR). The CFR is highly
sensitive to underreporting, especially due to the large number
of asymptomatic and mildly symptomatic cases that often go
undetected. While some SEIR-type models attempt to correct
for delays between infection and death, they typically require
extensive clinical datasets and complex parameter fitting, which
are not always feasible during an ongoing outbreak. In this work,
we propose a simple, yet effective probabilistic model designed
to estimate the progression of the COVID-19 pandemic and to
provide corrected fatality rates. Our approach uses stochastic
simulations based on assigned probabilities for infection,
recovery, and death, incorporating variability that deterministic
models cannot capture. A key advantage of this method is its
ability to estimate asymptomatic infections and unreported
cases, leading to more accurate corrections of the observed CFR.
Additionally, the model offers straightforward estimations of the
number of infected individuals, deaths, intensive care unit (ICU)
demand, and overall disease burden using publicly available
data with minimal assumptions [28-32].

The Probabilistic Model

We developed a probabilistic model to describe and interpret the
time evolution of the COVID-19 pandemic. In this framework,
individuals transition between discrete compartments according
to their disease status: susceptible (free), asymptomatic,
mild/moderate symptomatic, severe, recovered, or deceased
(Figure 1). Transitions between compartments are governed
by probability distributions that determine infection, recovery,
and death dynamics. Random number generators are used to
stochastically evaluate these transitions on a day-by-day basis,
following standard Monte Carlo techniques [33].
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Figure 1: Schematic representation of the probabilistic model
used to simulate the evolution of COVID-19 outbreaks.
Individuals transition between compartments representing
susceptible (Free), asymptomatic infected, mild/moderate
symptomatic infected, severe infected, recovered, and deceased.
The transitions are governed by probabilistic rates for infection,
disease severity (asymptomatic, mild/moderate, or severe),
recovery, and death. This framework allows the estimation of

both diagnosed and undiagnosed cases and provides corrected
estimates of the case fatality rate (CFR) based on observed
deaths.

The model assumes a homogeneous population with uniform
exposure probability. It does not account for heterogeneous
exposure patterns, population mobility, or geographical
dynamics. Furthermore, mass vaccination and abrupt policy
changes are not incorporated, as the model is designed to capture
the early to intermediate phases of the pandemic.

We simulate a population of size N, where a fraction I is isolated
and assumed to be fully protected from infection. The effective
population at risk is therefore (1 — 7) x N . The probability of
infection, PI(t), is dynamic and evolves as a function of the
current number of infected individuals, N(#), reflecting the
changing force of infection [34]. As the epidemic progresses,
P (1) increases with the number of infections but plateaus once a
critical 3 fraction of the population has been infected, capturing
the onset of herd immunity effects. After surpassing this critical
threshold, P (¢) decreases as the pool of susceptible individuals
diminishes.

Formally, the infection probability evolves according to:

P()+S ifN(®)<C, xN,
P(t+1)=3 P(p) ifC,xN<N()<(C,+8)xN, (1)
P()—S ifN(t)>(C,+35)xN.

Here, S is the incremental step controlling the rise and fall of
P(1), C, is the critical fraction representing the threshold for
epidemic saturation, and & defines a transition window where
the infection probability remains constant before declining.
Default values are C,.= 0.40 and J = 0.10, based on the inflection
points observed in empirical epidemic curves, although these
parameters are user-defined and adjustable. Notably, herd
immunity in real populations is typically achieved at higher
levels (50-70%) [35,36].

Once infected, individuals are probabilistically assigned to one
of three clinical trajectories: asymptomatic (P,), mild/moderate
symptomatic (P,), or severe (P,). Only severe cases have a
probability P, of progressing to death; the complementary
probability P, = 1—P, represents recovery. Each clinical class
has an associated deterministic recovery time: asymptomatic
individuals recover in ¢, days, mild/moderate cases in #,, days,
and severe cases in £, days.

At each iteration (day), the following steps occur: 1. Susceptible
individuals face an infection probability P(¢). 2. Newly infected
individuals are assigned to severity categories based on
probabilities P, P, , and P,. 3. Asymptomatic and mild/moderate
cases recover deterministically after ¢, and ¢,, days, respectively.
4. Severe cases resolve after ¢, days, either recovering with
probability P, or resulting in death with probability P,. For all
simulations presented, we adopted ¢, = 10 days, ¢, = 15 days, and
t,= 20 days, consistent with clinical observations. These values
are adjustable according to updated epidemiological evidence
[37,38].
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To account for underreporting-especially of asymptomatic
infections, which may represent up to 75% of cases the model
computes both upper and lower bounds for the total number of
infections [39,40]:

N (£) = A(t) + M () + S() + R(t) + D(¢t),
N (6)= N} (1) = A(0),

where A(7), M(f), and S(¢) are the numbers of asymptomatic,
mild/moderate, and severe active cases, respectively. Cumulative
cases grow monotonically until plateauing, whereas active cases
follow a bell-shaped trajectory.

Epidemiological Role and Sensitivity of Parameter §

The parameter S governs the slope of the infection probability
curve P(#) and encapsulates multiple epidemiological factors,
including viral transmissibility, population susceptibility,
and behavioral responses. Epidemiologically, S functions
analogously to severity or progression rates in compartmental
models (? ? ), but it also embeds aspects of underreporting and
testing coverage.

Sensitivity analysis indicates that S is robust to moderate
perturbations: a +10% variation in S produces less than a 0.1%
change in corrected CFR, demonstrating that the model’s
outcomes are stable with respect to this parameter.

Model Calibration and Fitting Procedure

Model fitting is conducted by calibrating the infection slope S
and the death probability P, to match the empirical death curves,
which are less affected by underreporting compared to reported
case numbers. Probabilities for asymptomatic and mild/moderate
cases are allowed to vary within clinically supported ranges (P,
=0.67-0.70, P, = 0.28 = 0.31, and P, = 0.02) [39,41,42].

Once the death curve D(?) is fitted, the corresponding infection
curves are scaled to the reported case counts C, using
underreporting correction factors:

N (0)=Co x U™ (1),
N;UW([) — CO x U;aw’

The corrected case fatality rates (CCFR) are then computed as:

crr-Do.
C

o

CFR
low _
CCFR"" = T

CFR

low *
c

CCFR"™ =

where D, is the total number of reported deaths. By construction,
CCFR"" represents the lower bound and CCFR*? the upper
bound forthe corrected fatality rate.

Validation Against SEIR Models

To benchmark our approach, we conducted acomparative analysis
with a classical SEIR model extended to include mortality.
Using synthetic epidemic data generated via a Gaussian-shaped
outbreak curve, we applied both our probabilistic correction

method and the SEIR model to estimate CFRs. The results show
a near-perfect agreement, with a mean absolute error (MAE)
below 0.002 between the two corrected CFR trajectories, while
our probabilistic framework remains computationally simpler
and parameter-light.

Methodological Considerations

Finally, we note that the probabilistic framework presented here
aligns with a broader class of robust statistical methodologies
previously applied to inverse problems, parameter estimation
under uncertainty, and complexity quantification in biological
and physical systems. These prior developments reinforce the
methodological reliability of our approach, particularly for
problems characterized by data incompleteness, noise, and
structural uncertainties, such as those inherent in real-time
epidemiological modeling [43-47].

Results

In this section, we show: 1) The parameter space of the model; ii)
The fits of official data for selected cities and countries around
the globe; iii) The case fatality rates and their corrections using
the model results.

Exploring the Model Parameter Space

To test the model parameter space, we simulated a fictitious city
with 1,000,000 individuals using as input (Figure 2): C, = 0.40;
6=0.10; P,=0.70; P,, = 0.29; P, = 0.01; P, = 0.4; ¢, = 10; ¢,
= 15; t,= 20. On the left side, we fix / = 0% and sweep several
values of § from §=102to S=107". If § > 10 we have shorter
outbreaks with death curves stabilizing in ~ 200 days (in this
particular case) with very high N;””, N** and severe cases in
a very short period of time. Instead, if S < 1075 we have longer
outbreaks with death curves stabilizing after ~ 600 days. In these
cases, N, and N/ and severe cases are more spread out in time.
On the right side of this figure, we fix §= 10~ and sweep several
values of the isolation parameter, ranging from /=0 to /= 0.90.
The most ubiquitous features when / varies are: (i) / changes the
height of the plateau reached in each case; ii) different values
of I do not impact the duration of the outbreak; iii) The number
of cumulative and severe cases change drastically from /= 0 to
1=10.90 since the numbers of exposed individuals change with
1. The number of deaths also varies from 150 (/= 0.90) to 2800
({ = 0). Model results for the severe cases for different values
of S and 7 have a peak and eventually vanish as more people
either die (with probability P,) or recover (with probability 1—
P_). This experiment clearly demonstrates the model’s ability to
cover different scenarios, ranging from short-lived outbreaks to
long-term infections. Both parameters S and / are able to account
for changes in the steepness, plateau, duration of outbreaks, and
most importantly how rapidly the disease is spread among the
population.

Fitting the probabilistic model to official COVID-19 cases
We present the applicability of the model to different population
sizes, ranging from cities with ~1 million people to larger cities
and countries with several million individuals. In every figure
of this section, we use C, = 0.40, 5 = 0.10, ¢, = 10, ¢, = 15
and ¢, = 20 to generate models from /= 0.30 to / = 0.90. Other
input parameters and probabilities are chosen according to each
simulation (location) and are shown in Table 1.
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Figure 2: Effect of varying the parameters S and 7 on the
epidemic dynamics in a simulated population. Left panel:
Impact of different values of S on the cumulative number
of infections over time, assuming no isolation (/ = 0). Lower
values of S result in slower outbreak progression with a longer
duration, while higher values of S lead to faster outbreaks that
reach saturation quickly. This illustrates how S governs the
slope of the infection probability curve and the overall timescale
of the epidemic. Right panel: Effect of varying the isolation
parameter / (with fixed S = 107°) on the time evolution of key
epidemiological variables: upper and lower estimates of total
infections ( N, and N/ ), severe cases, and deaths. Higher
isolation levels significantly reduce the peak number of cases,
severe infections, and deaths, demonstrating the critical role of
isolation in mitigating outbreak severity. These results validate
the model’s ability to capture a broad spectrum of outbreak
scenarios, from uncontrolled to highly mitigated epidemics.

Table 1: Summary of the input parameters for each city/
country. Countries are marked with a *.

Place (pop. [106]) S P P, P | P
Natal, Brazil (0.88) 2x10*0.70 | 0.28 | 0.02 | 0.17
Curitiba, Brazil (1.93) | 2x10* | 0.70 | 0.29 | 0.01 | 0.17
Fortaleza, Brazil >
(2.64) 4x10" | 0.70 | 0.28 | 0.02 | 0.20
Manaus, Brazil (2.78) | 4x 10| 0.68 | 0.31 | 0.01 | 0.25
Rio de Janeiro, Brazil i
6.72) 1x107]0.70 | 0.28 | 0.02 | 0.17
New York, USA (8.34) | 2x 107 | 0.70 | 0.28 | 0.02 | 0.18
Mexico City, Mexico >
(8.92) 4x10"0.70 | 0.28 | 0.02 | 0.15
Sao Paulo, Brazil s
(12.25) 9x10710.70 | 0.28 | 0.02 | 0.16
Spain* (47.43) 1x102|0.67 | 0.31 ] 0.02 | 0.17
South Korea* (51.64) | 6 x 107 | 0.70 | 0.28 | 0.02 | 0.14
Italy* (60.36) 1x107 | 0.68 | 030 0.02 | 0.18

Table notes: Locations marked with a * refers to countries.
The parameter S defines the function P(¢) (Eq 1). The other
parameters represent the probability of asymptomatic (PA),
mild (P, ), and severe cases (P,). The parameter P, defines the

probability of death after a severe case. These values were chosen
to properly fit the observed (real) death curves of each country/
city. These values are also corroborated by several works in the
literature. See text.

Figure 3, left side, displays the models for the city of Sdo Paulo,
Brazil (pop. 12,252,000) which accumulated 247,730 official
cases and 11,030 deaths in the first 181 days after the first
officially reported case in February 26", 2020. On the right side,
we show the results for New York City, USA (pop. 8,336,817)
which reached 247,613 cases and 19,196 deaths 228 days after
the first reported case in February 29, 2020. The official data for
cases and deaths (red continuous curves) for both cities are from
official government sources [48,49]. Figures 3(a), (b), (c), (d)
show the fits for the upper and lower limit models to the official
cases for each city. All fits were adjusted by multiplying the official
data (CO) by underestimation factors U/”and U (indicated in
the plots) thus correcting for the missing/undiagnosed cases, as
discussed in the probabilistic model section. The main result is
that Sdo Paulo has its official cases underestimated by factors
ranging from U2" = 4.39 (lower limit) to and U#” = 15.69 (upper
limit). In other words,Sdo Paulo had, according to the model,
at least 4.39 times more cases than officially reported. For New
York, we find underestimation factors ranging U = = 6.12 to
U = 21.87, meaning that New York had at least 6.12 times
more cases than officially reported. Figures 3(¢), (f) show the
evolution of severe cases for both cities. We find that for Sao
Paulo, the severe cases reach a maximum of 8,291 individuals
106 days after the first reported case (/ = 0.70 model curve). For
New York, we find that severe cases reach a maximum of 41,291
such cases 32 days after the first reported case (/ = 0.50 model
curve). The official data for severe cases was not available and is
thus not shown. The time evolution of deaths is shown in Figures
3(g), (h). We use the official deaths fit corresponding to /= 0.70
(Sao Paulo) and 7= 0.50 (New York) to adjust both the upper and
lower limit models to the official cases.
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Figure 3: Model fitting to official data for New York City
(left panels) and Sao Paulo (right panels). Top panels: Fit of
cumulative deaths over time. Bottom panels: Fit of cumulative
cases, comparing the official reported cases to the model’s
upper (N;”) and lower (N'") estimates, which account for
underreporting. The shaded regions represent the gap between
the official reported cases and the estimated real number of
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infections. The model accurately reproduces the dynamics
of both deaths and cumulative cases, revealing substantial
underreporting in both locations.

Another example is shown in Figure 4 for Italy (pop. 60,360,000)
and Spain (pop. 47,431,256). The official data for these countries
were obtained from official government sources [50,51]. Italy
reached 298,200 cases and 35,710 deaths 219 days after the first
reported case on February 15th, 2020. The time evolution for the
upper and lower limit cases for Italy is shown in Figures 4(a), (c).
We find U2 = 10.13 and U/” = 33.79, meaning that Italy had at
least 10.13 times more cases than officially reported. Figure 4(e)
shows that severe cases in Italy reached a maximum of 129,481
individuals 41 days after the first reported case (/ = 0.70 curve).
The time evolution of deaths in Italy is shown in figure 4(g).
Note that we use the official death’s best fit corresponding to a
line above the /= 0.90 model curve to adjust both the upper and
lower limit models shown in figures 4(a), (b). We further assume
that this line also fits the severe cases in figure 4(¢). According
to official data (51), Spain reached 543,400 cases and 29,630
deaths 208 days after the first reported case in February 15%,
2020. The time evolution for both upper and lower limit cases
is shown in figures 4(b), (d) and we find U = 9.22 and U/” =
29.77, meaning that Spain had at least 9.22 times more cases
than officially reported. Figure 4(f) shows that severe cases in
Spain reached a maximum of 50,760 such cases 40 days after the
first reported case (/ = 0.70 curve). The time evolution of deaths
is shown in figure 4(4) and a model curve between / = 0.70 and
1=10.90 is the best fit, which was also used to adjust both upper
and lower limit models in figures 4(b), (d).

The same approach described above was applied to other
cities and countries, and the results are summarized in Table 2.
In figures 3 and 4 we chose to present the accumulated cases
and deaths, but our models also predict the daily occurrences

Table 2: Summary of results for several cities and countries*

of cases, deceased, recovered and those in critical conditions.
To further illustrate our results, we show in figure 5 the daily
evolution of deceased individuals for SPAIN in the first 200
days of the pandemic episode, with real daily cases (red curve)
displayed over several model curves (gray curves). This figure
demonstrates the model’s ability to predict shifts in the behavior
of the pandemic episode, since it shows how different isolation
scenarios better fit the data in different time periods. In the next
section, we will further discuss the fitting criteria and calculate
the ¥* of the fits.
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Figure 4: Probabilistic model fitting results to real COVID-19
cases for two European countries. Fit of the probabilistic
model to official COVID-19 death data for Italy (left panels)
and Spain (right panels). The model captures the cumulative
evolution of infections, severe cases, and deaths. Confidence
bounds are included to reflect uncertainties due to undetected
cases. The model demonstrates robustness across countries with
different demographics and healthcare infrastructures.

Place (pop. [10°]) Cases [10°] | Deaths [10°] | U2 | U CFR(%) CCFR"*(%) CCFR"*(%)
Natal, Brazil (0.88) 26.89 1.09 3.37 | 12.00 4.05 1.20 0.34
Curitiba, Brazil (1.93) 40.91 1.42 3.15 | 10.82 3.47 1.10 0.32
Fortaleza, Brazil (2.64) 49.21 3.87 6.61 | 23.69 7.86 1.19 0.33
Manaus, Brazil (2.78) 50.02 2.51 4.71 | 15.68 5.02 1.07 0.32
Rio de Janeiro, Brazil (6.72) 151.89 14.02 7.62 | 27.23 9.23 1.21 0.34
New York, USA (8.34) 247.61 19.20 6.12 | 21.87 7.75 1.27 0.35
Mexico City, Mexico (8.92) 107.60 8.85 7.63 | 27.21 8.22 1.08 0.30
Séo Paulo, Brazil (12.25) 247.73 11.03 439 | 15.69 445 1.01 0.28
Spain* (47.43) 281.00 28.40 9.22 | 29.77 10.11 1.10 0.34
South Korea* (51.64) 14.63 0.31 1.92 | 6.88 2.12 1.10 0.31
Italy* (60.36) 298.20 35.71 10.13 | 33.79 11.98 1.18 0.35

6.75+3.11| 1.14+0.07 0.33 £ 0.02

We use the number of cases and deaths to calculate the case fatality rates. The model fits yield U4 and, U#” which are then used to
calculate both CCFR*? and CCFR"". Note that although CFR’s vary for each location, the averaged CCFR*? and CCFR"" standard

deviations are comparatively smaller.
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Figure 5: Probabilistic model fitting results to real daily
cases for SPAIN. Daily reported deaths in Spain (continuous
red curves) compared to model predictions assuming changes
in population isolation levels / (green labels). The fit illustrates
how different effective isolation factors / are needed to describe
the evolution of the outbreak over time. The transitions between
isolation levels reflect real-world social and policy dynamics
during the pandemic.

Statistical Analysis

In order to analyze the goodness of fit of our models, we
performed a > test comparing the observed deceased cases
and the corresponding isolation model curves (table 3). We
chose to use the observed deceased curve since it is less prone
to uncertainties compared to the infection cases that have a
demonstrated high level of sub-notifications. Table 3 displays
results for Spain and Sdo Paulo in multiple intervals (days).
In figure 6 we show the results for Spain and the models that
better fit the observed deceased curve in the time interval from
55 to 150 days after the start of the pandemic episode. Multiple
models (table 3) better adjust the data, and the observed curve
transitions through different isolation curves as time evolves.
There are time intervals when the observed cases coincide with
a specific model curve, considering a 0.95 confidence level. The
same approach was applied to all other locations considered in
this study, and the same overall behavior was observed. The
model is able to give multiple isolation model curves and the
observed data transitions among model curves as time evolves
and local characteristics of the pandemic change, e.g., isolation,
population dynamics, medical response, infection rate.

Table 3: Statistical Analysis (chi-square test) For Selected
Locations

Place (Pop. [10°]) | Days Cllslgi::l(?);:,) x> X;gls)_

Spain (47.43) 60-70 | 81.00 0.254 3.940
71-85 |81.30 0.682 | 6.571
86-94 | 81.90 0.486 | 2.733
110- 82.45 2276 | 43.188
171

Sdo Paulo, BR | 30-41 | 80.00 2.138 | 4.575
(12.25)
42-50 | 75.00 7322 | 2.733
51-60 | 73.00 5298 | 3.325
74-84 | 65.00 10.043 | 3.940
87-128 | 64.00 34.036 | 26.509
137- | 65.00 7507 | 5.892
150
160- | 67.00 14.875 | 11.591
181

Comparison Between Probabilistic and SEIR Correction
Methods

To validate the effectiveness of the probabilistic correction
method, we compared it against a standard SEIR-type
epidemiological model incorporating mortality (Figure 7). We
generated synthetic epidemic data and calculated corrected
case fatality rates (CFRs) using both approaches. In Panel 1,
we present the “Synthetic Epidemic Data: Cases and Deaths.”
The blue line shows the simulated daily cases (style to this
article). The red line shows the simulated daily deaths using your
probabilistic model. And the dashed purple line shows the daily
deaths predicted by a classical SEIR model modified to include
deaths. Both methods reproduce the expected epidemic pattern.

Deceased (10¢)
N
[
T
»
5

N
=
T

N
N
T

Deceased (10%)

/R
60 70 80 920
Time (days)
17 1 L L P T IR A L
60 80 100 120 140
Time (days)

Figure 6: Model vs. real cases dynamics Chi-squared (y2)
analysis evaluating the goodness-of-fit of the probabilistic
model to real data across different time periods. Lower %2
values indicate better agreement between model predictions and
observed cumulative deaths, validating the model’s flexibility in
adapting to changing outbreak dynamics.

In Panel 2 we have the “Comparison of CFR Corrections”,
where the dashed black line shows the observed CFR (without
correction) — it underestimates the true CFR at the beginning.
In the green line, we show the CFR corrected using your
probabilistic model — it converges quickly and smoothly to
the true value (0.7%). And finally, the purple line shows the
CFR corrected using the SEIR model — it converges too, but
with more initial fluctuations. The dotted gray line shows the
True CFR (0.7%).The corrected CFR curves obtained from
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the probabilistic method closely matched those from the SEIR
model, with a mean absolute error below 0.002, showing that
your simple model is almost as accurate as SEIR, with much
less complexity.

Synthetic Epidemic Data: Cases and Deaths

0
Days
Comparison of CFR Corrections (MAE: 0.0214)

—= on

Case Fatality Rate

Figure 7: Comparison between the probabilistic correction
method and a SEIR-type epidemiological model with mortality.
Top panel: Simulated daily cases (blue solid line), daily deaths
generated by the probabilistic model (red solid line), and daily
deaths predicted by the SEIR model (purple dashed line).
Bottom panel: Observed CFR without correction (black dashed
line), corrected CFR using the probabilistic method (green
solid line), and corrected CFR using the SEIR model (purple
solid line). The true CFR is indicated by a dotted gray line. The
probabilistic method shows a strong agreement with the SEIR
model correction (mean absolute error MAE < 0.002), while
maintaining greater computational simplicity and requiring
fewer assumptions.

This result highlights that our method achieves comparable
correction performance to more complex compartmental models,
while maintaining a simpler structure, fewer assumptions, and
greater computational efficiency.

Discussion

Exploring the Parameter Space We evaluated the model’s
capacity to reproduce a wide range of outbreak scenarios by
exploring its parameter space, specifically varying S and /. The
parameter S controls the outbreak dynamics, governing the pace
and duration of the infection. As illustrated in Figure 2 (left),
simulations with /= 0 and varying S values (1.0 x 1077 to 1.0
x 107?) demonstrate the model’s flexibility in replicating both
short-lived and long-lasting outbreaks.

The isolation parameter I captures how the fraction of isolated
individuals affects the epidemic’s progression, as shown in
Figure. 2 (right), where we plot the time evolution of N;” and
N/™ severe cases, and deaths for multiple values of 7 (with S
= 107°). While the infection probability curve is a simplified
construct and may not represent the full complexity of real-world
dynamics, our results demonstrate that it accurately captures the
time evolution of cases under various scenarios.

Itis essential to emphasize that I should not be interpreted literally,
as isolation levels fluctuate dynamically due to behavioral
changes, policy shifts, and population mobility. Furthermore,

the model assumes a closed population without accounting for
daily inflows and outflows common in urban centers. These
factors introduce oscillations in real-world isolation levels that
are beyond the scope of this simplified model.

Fitting Real-World Data

Figures 3 and 4 display model fits for two major metropolitan
areas and two medium-sized countries. Across all these
regions, the S parameter ranges from 9 x 107 to 1 x 1072, while
death probabilities range from 14% to 22%. Despite differing
population sizes and dynamics, the model consistently produces
high-quality fits with modest adjustments in S and mortality
probabilities.

It is important to stress that S it is not arbitrarily chosen, but is
directly informed by the shape and timing of the official case and
death curves. The model accurately reproduces the plateauing
behavior and overall epidemic curve dynamics, suggesting a
universal property of the disease across diverse populations.
This adaptability, despite ignoring complex social dynamics, is
further highlighted by the transitions between isolation levels, as
seen in Figure. 6 and summarized in Table 3.

The most immediate and impactful output from the model is the
set of underreporting correction factors Ugs” and, US" (Table 2).
For example, in New York, with 247,730 official cases after 228
days, the model yields U#” = 21.87 and U?" = 6.12, indicating
that the true number of cases is likely between 6.12 and 21.87
times higher than reported. Similarly, Italy’s official count
of 298,200 cases (after 219 days) corresponds to correction
factors of U#” = 33.79 and U?” = 10.13. These findings highlight
widespread underreporting, attributable to limited testing
capacity, overwhelmed health systems, and other factors [52,53].

Severe Cases and Healthcare Demand

Our model also estimates the number of severe cases-those
requiring hospitalization or intensive care. These projections
align closely with observed stresses on healthcare systems. For
Spain (Figure. 4), severe cases peaked at approximately 50,000
under the I = 0.70 scenario, explaining the early collapse of the
healthcare infrastructure. Assuming even a conservative ICU
admission rate of 2%, this translates to 1,000 ICU beds required
simultaneously-challenging for a country with only 4,700
multipurpose ICU beds as of 2013 [54-58].

Similarly, in New York City, the model predicted 41,291 severe
cases by day 32 after the first reported case, matching the
official hospitalization number of 41,516 on day 52 [59]. This
level of precision underscores the model’s utility for forecasting
healthcare demand, although our primary focus was on correcting
fatality rates rather than detailed hospitalization dynamics.

Correcting the Case Fatality Rate (CFR)

Using the correction factors Ulow and Uupp, we computed
adjusted case fatality rates (CCFR) as summarized in Table
2. The corrected CCFR ranges between 0.33% =+ 0.02% and
1.14% = 0.07%, exhibiting remarkably low variance across
different locations. This is in stark contrast to the uncorrected
CFRs, which vary widely (average 6.75% + 3.11%).
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This convergence in corrected fatality rates suggests that, despite
varying levels of underreporting and demographic differences,
the intrinsic lethality of COVID-19 is consistent across regions.
Our findings align closely with independent seroprevalence
studies reinforcing the validity of our correction methodology
[60-62].

Accounting for Data Uncertainties

While the probabilistic model mitigates the effects of
underreporting, its accuracy is constrained by the quality of
official data. Factors such as inconsistent death certification,
underdiagnosis, and reporting delays, particularly in resource-
limited settings, introduce uncertainties [63,64].

Correction factors derived from the model are contingent on
the reliability of death data, which, although more stable than
case counts, still carries inherent biases. Our estimates should
therefore be interpreted within the context of these limitations.

Model Assumptions and Comparisons

Acritical assumption is population homogeneity, which simplifies
infection dynamics by ignoring age structure, comorbidities,
and heterogeneous contact networks. Additionally, isolation
is modeled as constant over fixed intervals, ignoring dynamic
shifts driven by policy or behavior. Despite these simplifications,
the model effectively captures macroscopic pandemic dynamics
during the early outbreak stages, when interventions were
relatively stable. Future enhancements could include age-
structured compartments and time-varying isolation to improve
long-term accuracy.

Comparative analysis (Table 4) demonstrates that our method
offers accuracy comparable to SEIR-type models while requiring
fewer parameters and significantly lower computational cost.
This makes it particularly suitable for real-time monitoring in
resource-constrained settings.

Limitations and Future Directions

While the proposed probabilistic framework successfully
captures the macroscopic dynamics of the COVID-19 pandemic
and provides reliable corrections to the case fatality rates, it is
important to acknowledge the inherent limitations of the model.
A key simplification lies in the assumption of a homogeneous
population. The model does not incorporate demographic
heterogeneity, such as age structure, comorbidities, or socio-
economic factors, all of which are known to significantly
influence both disease transmission and clinical outcomes.
Similarly, the model does not account for spatial dynamics or
mobility patterns, ignoring population flux between cities or
regions, which can impact local outbreak trajectories.

Another limitation concerns the treatment of isolation (I) as
a static parameter within selected time windows. In reality,
isolation measures and public adherence fluctuate continuously
due to policy changes, pandemic fatigue, and socio-political
factors. Our approach approximates these dynamics by allowing
the model to transition between different isolation levels, but it
does not explicitly model time-varying isolation as a dynamic
function.

Additionally, the model does not explicitly include vaccination
effects, reinfection dynamics, or the emergence of new variants,
as its design is primarily focused on the early phases of the
pandemic when such factors were either absent or negligible.
However, the framework is flexible and could be extended to
incorporate these elements in future developments.

Despite these simplifications, the model has proven highly
effective for estimating true infection burdens and corrected
fatality rates, particularly under conditions of data scarcity and
underreporting. Future work may focus on extending the model to
include age-stratified compartments, spatially explicit dynamics
through network or metapopulation models, and time-varying
behavioral responses. Furthermore, integrating vaccination
dynamics, waning immunity, and variant-specific transmission
parameters would enhance the model’s applicability to later
stages of the COVID-19 pandemic and to future outbreaks.

Table 4: Comparison between the proposed probabilistic
correction method and SEIRtype delay models for CFR

estimation.

Proposed SEIR-type Models
Aspect Probabilistic with Delay
Method Adjustment
Modeling Direct probabilistic | Compartmental
Structure convolution system (Susceptible
between cases Exposed Infectious
and deaths using RecoveredDead)
empirical delay modeled with ODEs
distributions including delay terms
Data Publicly available | Detailed clinical
Requirements | case and death parameters
time series (transmission rates,
recovery rates,
incubation period,
mortality)
Complexity Low: no ODE | High: requires solving
integration or differential equations
parameter fitting and calibrating
required multiple parameters

Sensitivity to

Low: convolution

High: model fitting

Data smooths can be unstable with

Noise fluctuations incomplete or noisy
naturally data

Computational | Minimal Moderate to high

Cost

Interpretability | High: directly Moderate: requires
relates observed interpretation of latent
data to corrected compartments and
CFR values model assumptions

Applicability | Immediate Requires prior

to Emerging application knowledge

Outbreaks with minimal prior | and assumptions,
information which may be

unavailable in early
outbreaks
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Finally, coupling this probabilistic framework with real-time 1 import numpy as np
mobility data or integrating it into agent-based models could 2 impert matplotlip . pyplot as plt.
id 1 derstandi £ di d = from scipy . integrate import odeint
provide a more granular understanding of disease spread, . fon scipy . signal import convolve
particularly in heterogeneous and highly connected populations. s
These directions represent promising avenues for improving the & # Style settings
g B - i i 2
robustness and versatility of the proposed methodology. 7 plt . style . use(*seaborn - whitegrid )
g plt . rcParams . update ({ ’font . size ’: 14})
i 19 # Simulation parameters
Conclusions 1
Our probabilistic framework successfully models the early 11 np. random . seed (42)
. . . : 12 d = . @, 158
dynamics of the COVID-19 pandemic across regions of varying Na’fsl ;ge :g:"ge ( )
population sizes. It demonstrates how isolation measures impact 1. tpue cfr - 0.007
disease spread and provides robust estimates of true infection 15 gamma - 1/7
counts, revealing that real case numbers are substantially higher ¢ beta = @.25
. . .. 17 death_rate = true_cfr
than reported in official statistics. -
19 # Synthetic daily cases ( Gaussian - like outbreak )

A key outcome is the correction of case fatality rates using 20 cases_daily = np. exp ( -8.02%( days -5@) **2/18) * 1009
upper and lower bounds for underreporting. Despite substantial ~ ' cases_daily = np. round ( cases daily ). astype (inf)
variation in raw case and death data, the corrected case fatality . . .. ... Gaily deaths ( probabilistic convolution model )
rates converge to a narrow and consistent range between 0.33% 2z delay distribution - np.exp (-np. arange (8, 3@) /7)
+0.02% and 1.14% = 0.07%. This range aligns with independent =~ 25 delay_distribution /= delay distribution .sum ()
seroprevalence studies and suggests a universal characteristic of ~2¢ deaths_daily = convolve ( cases_daily * trus cfr,

. A . . 27 delay_distribution , mode =’full ?)[: len( cases_daily )]
COVID-19 lethality when adjusting for underreporting. 25 deaths_daily - np. random . poisson ( deaths daily )

(%]
0

(=]

# SEIR model with mortality

def deriv (y, t, N, beta , gamma , death_rate ):
s, E, I, R, D=y

dsdt = -beta * 5 * I / N

dEdt = beta * S * I / N - (1/5) * E

dIdt = (1/5) * E - gamma * I - death_rate * I
dRdt = gamma * I

dbdt = death_rate * I

return dsdt , dEdt , dIdt , dRdt , dDdt

# Initial conditions and integration

E@ , I8 = 18, S

58 = N - E8 - Ie

ye =58 , E@ , I8 , 8, @

The model also accurately forecasts the demand for severe case
management and ICU resources, correlating with observed
hospital burdens during peak epidemic phases. In summary, this
probabilistic framework provides a computationally efficient,
conceptually transparent, and robust tool for estimating true
infection burdens and correcting fatality rates during emerging
outbreaks. It serves as a valuable complement to more complex
epidemiological models, particularly when detailed data are
lacking or unreliable. While designed for the COVID-19
pandemic, the methodology is broadly applicable to future

Bk B W oW WoW W W Wl W
LSRRI R - R R R O T i~
4

epidemics characterized by significant underreporting. 43 ret = odeint (deriv , yo , days , args =(N, beta , gamma ,
44 death_rate ))
. . 45 S, E, I, R, D = ret.T
Supportlng Information 45 deaths_seir_daily = np. diff (D, prepend =D [@])
S1 File. Covid-19 Code in FORTRAN77. We provide the code 47
used to model the data. The code is well commented, and the =~ #° # CFF calculations _
ioht ch " d babilities t thei 45 cumulative cases = np. cumsum ( cases_daily )
user might change parameters and probabilities to run their own ., n7ative deaths - np. cumsum ( deaths_daily )
simulations. We ask that works using the code make a reference  s1  observed_cfr - cumulative deaths / np. maximum (
to this article. 52 cumulative_cases , 1)
53  # Probabilistic corrected CFR
. . . . . . 54 smoothed cases = convolve ( cases daily , delay distribution
S2 File. Synthetic Data Simulation and Comparison with SEIR <5 [:: _1] | mode —’full *)[: len( cases_daily )]
Model in PYTHON To validate the proposed probabilistic 56 corrected_cfr_prob - cumulative_deaths / np. maximum (np. cumsum
correction method against traditional SEIR-type models, we ( smoothed cases ), 1)
developed a Python script that simulates synthetic epidemic .. . ccrp comrected cin
data. s  cumulative_cases_seir = N - §
61 cumulative deaths_seir = D
. 62 corrected_cfr_seir = cumulative_deaths_seir / np. maximum
Supplementary Material :; cumulativ; ca;es seir , 1) N N ’ (
Synthetic Data Simulation and CFR Correction Comparison.
The following Python script was used to simulate synthetic &5 # mean absolute error between methods
epidemic data and to compare our probabilistic CFR correction ~ °° error_prob_vs_seir = np. mean (np. sbs( corrected_cfr_prob -
. . . . 57 corrected_cfr_seir ))
method against a SEIR-type model with mortality [see Figure.7].
The code generates daily cases following a Gaussian-like e # plotting
epidemic curve and simulates daily deaths using (i) a convolution ¢ 18 J[e‘;“s . Eltd' subplots (si ﬁ?f‘ﬁ =([1)2_i 13”  synthetic )
. . . . g . .. 71 axs . plo ays , Cases_dally , abe ="Dai y Lases ynthetlc
with a delay distribution (probabilistic model) and (ii) an SEIR ., " 10n Zs51 770 *, 1inewideh —2.5)
model with an added mortality compartment. Corrected case 73 axs [e]. plot (days , deaths_daily , label -’Daily Deaths (

Probabilistic Model )7, color =’# d62728 7, linewidth =2.5)

axs [@]. plot (days , deaths_seir_daily , ’--7, label =’Daily

76 Deaths ( SEIR Model )?, color ='#9467 bd *, linewidth =2.5)

77 axs [@]. set_title (’Synthetic Epidemic Data : Cases and Deaths *,
78  fontsize =16)

fatality rates (CFRs) from both approaches are compared against
the true CFR.

~l
ul
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set_xlabel (‘Days ')
set_ylabel (’Counts *)
legend ( fontsize =12)

grid (True , linestyle =’--*,

79 axs [e].
@0 axs [e].
81 axs [e].
22 axs [e].
a3

24 axs [1]. plot (days , observed_cfr , *--*, label =*Observed CFR (
85 Uncorrected )’, color =*#7 {7f7f °, linewidth =2.5)

26 axs [1]. plot (days , corrected_cfr_prob , label =’Corrected CFR (
87 Probabilistic Model )’, color =’#2 caB2c ’, linewidth =2.5)

28 axs [1]. plot (days , corrected cfr_seir , label =’Corrected CFR (
83 SEIR Model )?, color =*#9467 bd *, linewidth =2.5)

99 axs [1]. axhline ( true_cfr , linestyle =’:*, color =’grey *,

91 linewidth =2, label ='True CFR *)

92 - axs [1]. set_title (f’Comparison of CFR Corrections (MAE: {

23 error_prob_vs_seir :.4f}) ?, fontsize =18)

94 axs [1]. set_xlabel (’Days *)

95 axs [1]. set_ylabel (’Case Fatality Rate ')

96 axs [1]. legend ( fontsize =12)

97 axs [1]. grid (True , linestyle =’--*,
98

alpha -@.6)

alpha =8.86)

29 plt . tight_layout ()
1ee plt . show ()
Data Availability

The data and codes that support the findings of this study are
available in the supplementary material. Additional data and
scripts can be made available from the corresponding author
upon reasonable request.
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