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Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the virus responsible for the coronavirus disease 
(COVID-19). It first emerged in late 2019 in Wuhan, China, 
likely crossing from animal hosts to humans through an as-yet 
undetermined mechanism. By March 2020, the disease had 
spread globally and was declared a pandemic by the World 
Health Organization (WHO).  SARS-CoV-2 is known to cause a 
broad spectrum of symptoms, primarily affecting the respiratory 
system and it spreads through respiratory droplets, contaminated 
surfaces, and airborne particles (10). This airborne route plays 

a crucial role in confined spaces such as airplanes, restaurants, 
and other enclosed environments. As with previous pandemics, 
non-pharmaceutical interventions such as isolation, social 
distancing, and lockdowns proved essential in containing the 
virus. However, these measures also led to significant social, 
economic, and political consequences worldwide [1-15]

Since the beginning of the pandemic, public health authorities 
and governments have made continuous efforts to monitor 
infections, manage healthcare resources, and estimate the true 
impact of COVID-19. Mathematical modeling has played a 
pivotal role in supporting these efforts. Classical epidemiological 
models, such as the SusceptibleInfectious-Recovered (SIR) 
framework introduced by Kermack and McKendrick in 1927, 
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ABSTRACT
An accurate estimation of the COVID-19 case fatality rate (CFR) is crucial for understanding the severity of the disease, forecasting healthcare demands, 
and evaluating its impact on large populations. However, this metric is often distorted by underreporting and delayed outcomes. In this study, we present 
a probabilistic model that captures the temporal dynamics of the COVID-19 pandemic and provides corrected estimates of the case fatality rate. The 
model incorporates transition probabilities between disease states to simu- late the evolution of infections, recoveries, and deaths. It explicitly accounts for 
asymptomatic, mild/moderate, and severe cases, enabling the estimation of undiagnosed infections within the population. We validate the model by fitting 
it to official data from medium-sized cities, major metropolitan areas, and medium-sized countries, covering populations ranging from a few million to tens 
of millions.

Based on the inferred proportion of undiagnosed cases, we compute corrected case fatality rates, which range from 0.33% ± 0.02% to 1.14% ± 0.07%. 
Remarkably, these values exhibit a degree of universality, appearing largely independent of geographic, social, or demographic factors. Our results are 
consistent with independent seroprevalence studies and randomized testing, offering a refined understanding of COVID-19 fatality metrics. Additionally, the 
model provides estimates for the number of severe cases, ICU demand, and the true number of infections, making it a versatile tool for pandemic response 
planning. Beyond COVID-19, the proposed probabilistic framework is adaptable to future infectious disease outbreaks characterized by significant data 
incompleteness and reporting biases.
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and its extensions (SEIR and others) have been widely used 
to forecast the evolution of the pandemic, estimate healthcare 
demands, and assess the impact of mitigation strategies [16-27].

Despite their utility, SIR-based models often rely on 
simplifying assumptions, treating populations as homogeneous 
and processes as deterministic. These limitations become 
particularly relevant when addressing key epidemiological 
metrics such as the case fatality rate (CFR). The CFR is highly 
sensitive to underreporting, especially due to the large number 
of asymptomatic and mildly symptomatic cases that often go 
undetected. While some SEIR-type models attempt to correct 
for delays between infection and death, they typically require 
extensive clinical datasets and complex parameter fitting, which 
are not always feasible during an ongoing outbreak. In this work, 
we propose a simple, yet effective probabilistic model designed 
to estimate the progression of the COVID-19 pandemic and to 
provide corrected fatality rates. Our approach uses stochastic 
simulations based on assigned probabilities for infection, 
recovery, and death, incorporating variability that deterministic 
models cannot capture. A key advantage of this method is its 
ability to estimate asymptomatic infections and unreported 
cases, leading to more accurate corrections of the observed CFR. 
Additionally, the model offers straightforward estimations of the 
number of infected individuals, deaths, intensive care unit (ICU) 
demand, and overall disease burden using publicly available 
data with minimal assumptions [28-32].

The Probabilistic Model
We developed a probabilistic model to describe and interpret the 
time evolution of the COVID-19 pandemic. In this framework, 
individuals transition between discrete compartments according 
to their disease status: susceptible (free), asymptomatic, 
mild/moderate symptomatic, severe, recovered, or deceased 
(Figure 1). Transitions between compartments are governed 
by probability distributions that determine infection, recovery, 
and death dynamics. Random number generators are used to 
stochastically evaluate these transitions on a day-by-day basis, 
following standard Monte Carlo techniques [33].

Figure 1: Schematic representation of the probabilistic model 
used to simulate the evolution of COVID-19 outbreaks. 
Individuals transition between compartments representing 
susceptible (Free), asymptomatic infected, mild/moderate 
symptomatic infected, severe infected, recovered, and deceased. 
The transitions are governed by probabilistic rates for infection, 
disease severity (asymptomatic, mild/moderate, or severe), 
recovery, and death. This framework allows the estimation of 

both diagnosed and undiagnosed cases and provides corrected 
estimates of the case fatality rate (CFR) based on observed 
deaths.

The model assumes a homogeneous population with uniform 
exposure probability. It does not account for heterogeneous 
exposure patterns, population mobility, or geographical 
dynamics. Furthermore, mass vaccination and abrupt policy 
changes are not incorporated, as the model is designed to capture 
the early to intermediate phases of the pandemic.

We simulate a population of size N , where a fraction I is isolated 
and assumed to be fully protected from infection. The effective 
population at risk is therefore (1 − I) × N . The probability of 
infection, PI(t), is dynamic and evolves as a function of the 
current number of infected individuals, NI(t), reflecting the 
changing force of infection [34]. As the epidemic progresses, 
PI(t) increases with the number of infections but plateaus once a 
critical 3 fraction of the population has been infected, capturing 
the onset of herd immunity effects. After surpassing this critical 
threshold, PI(t) decreases as the pool of susceptible individuals 
diminishes.

Formally, the infection probability evolves according to:

	       PI(t) + S     if NI(t) ≤ CF × N,
PI(t + 1) =    PI(t) 	          if CF × N < NI(t) ≤ (CF + δ) × N,        (1)
	       PI(t) − S     if NI(t) > (CF + δ) × N.

Here, S is the incremental step controlling the rise and fall of 
PI(t), CF is the critical fraction representing the threshold for 
epidemic saturation, and δ defines a transition window where 
the infection probability remains constant before declining. 
Default values are CF = 0.40 and δ = 0.10, based on the inflection 
points observed in empirical epidemic curves, although these 
parameters are user-defined and adjustable. Notably, herd 
immunity in real populations is typically achieved at higher 
levels (50–70%) [35,36].

Once infected, individuals are probabilistically assigned to one 
of three clinical trajectories: asymptomatic (PA), mild/moderate 
symptomatic (PM), or severe (PS). Only severe cases have a 
probability PD of progressing to death; the complementary 
probability PR = 1−PD represents recovery. Each clinical class 
has an associated deterministic recovery time: asymptomatic 
individuals recover in tA days, mild/moderate cases in tM days, 
and severe cases in tS days.

At each iteration (day), the following steps occur: 1. Susceptible 
individuals face an infection probability PI(t). 2. Newly infected 
individuals are assigned to severity categories based on 
probabilities PA, PM, and PS. 3. Asymptomatic and mild/moderate 
cases recover deterministically after tA and tM days, respectively. 
4. Severe cases resolve after tS days, either recovering with 
probability PR or resulting in death with probability PD. For all 
simulations presented, we adopted tA = 10 days, tM = 15 days, and 
tS = 20 days, consistent with clinical observations. These values 
are adjustable according to updated epidemiological evidence 
[37,38].
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To account for underreporting-especially of asymptomatic 
infections, which may represent up to 75% of cases the model 
computes both upper and lower bounds for the total number of 
infections [39,40]:

( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ),

upp
I
low upp
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where A(t), M(t), and S(t) are the numbers of asymptomatic, 
mild/moderate, and severe active cases, respectively. Cumulative 
cases grow monotonically until plateauing, whereas active cases 
follow a bell-shaped trajectory.

Epidemiological Role and Sensitivity of Parameter S
The parameter S governs the slope of the infection probability 
curve PI(t) and encapsulates multiple epidemiological factors, 
including viral transmissibility, population susceptibility, 
and behavioral responses. Epidemiologically, S functions 
analogously to severity or progression rates in compartmental 
models (? ? ), but it also embeds aspects of underreporting and 
testing coverage.

Sensitivity analysis indicates that S is robust to moderate 
perturbations: a ±10% variation in S produces less than a 0.1% 
change in corrected CFR, demonstrating that the model’s 
outcomes are stable with respect to this parameter.

Model Calibration and Fitting Procedure
Model fitting is conducted by calibrating the infection slope S 
and the death probability PD to match the empirical death curves, 
which are less affected by underreporting compared to reported 
case numbers. Probabilities for asymptomatic and mild/moderate 
cases are allowed to vary within clinically supported ranges (PA 
= 0.67 − 0.70, PM = 0.28 − 0.31, and PS = 0.02) [39,41,42].

Once the death curve D(t) is fitted, the corresponding infection 
curves are scaled to the reported case counts CO using 
underreporting correction factors:
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The corrected case fatality rates (CCFR) are then computed as:
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where DO is the total number of reported deaths. By construction,
CCFRlow represents the lower bound and CCFRupp the upper 
bound forthe corrected fatality rate.

Validation Against SEIR Models
To benchmark our approach, we conducted a comparative analysis 
with a classical SEIR model extended to include mortality. 
Using synthetic epidemic data generated via a Gaussian-shaped 
outbreak curve, we applied both our probabilistic correction 

method and the SEIR model to estimate CFRs. The results show 
a near-perfect agreement, with a mean absolute error (MAE) 
below 0.002 between the two corrected CFR trajectories, while 
our probabilistic framework remains computationally simpler 
and parameter-light.

Methodological Considerations
Finally, we note that the probabilistic framework presented here 
aligns with a broader class of robust statistical methodologies 
previously applied to inverse problems, parameter estimation 
under uncertainty, and complexity quantification in biological 
and physical systems. These prior developments reinforce the 
methodological reliability of our approach, particularly for 
problems characterized by data incompleteness, noise, and 
structural uncertainties, such as those inherent in real-time 
epidemiological modeling [43-47].

Results
In this section, we show: i) The parameter space of the model; ii) 
The fits of official data for selected cities and countries around 
the globe; iii) The case fatality rates and their corrections using 
the model results.

Exploring the Model Parameter Space
To test the model parameter space, we simulated a fictitious city 
with 1,000,000 individuals using as input (Figure 2): CF = 0.40; 
δ = 0.10; PA = 0.70; PM = 0.29; PS = 0.01; PD = 0.4; tA = 10; tM 
= 15; tS = 20. On the left side, we fix I = 0% and sweep several 
values of S from S = 10−2 to S = 10−7. If S ≥ 10−4 we have shorter 
outbreaks with death curves stabilizing in ~ 200 days (in this 
particular case) with very high ( )upp

IN t, ( )low
IN t and severe cases in 

a very short period of time. Instead, if S ≤ 10−5 we have longer 
outbreaks with death curves stabilizing after ~ 600 days. In these 
cases, ( )upp

IN t and ( )low
IN t and severe cases are more spread out in time. 

On the right side of this figure, we fix S = 10−5 and sweep several 
values of the isolation parameter, ranging from I = 0 to I = 0.90. 
The most ubiquitous features when I varies are: (i) I changes the 
height of the plateau reached in each case; ii) different values 
of I do not impact the duration of the outbreak; iii) The number 
of cumulative and severe cases change drastically from I = 0 to 
I = 0.90 since the numbers of exposed individuals change with 
I. The number of deaths also varies from 150 (I = 0.90) to 2800 
(I = 0). Model results for the severe cases for different values 
of S and I have a peak and eventually vanish as more people 
either die (with probability PD) or recover (with probability 1−
PD). This experiment clearly demonstrates the model’s ability to 
cover different scenarios, ranging from short-lived outbreaks to 
long-term infections. Both parameters S and I are able to account 
for changes in the steepness, plateau, duration of outbreaks, and 
most importantly how rapidly the disease is spread among the 
population.

Fitting the probabilistic model to official COVID-19 cases
We present the applicability of the model to different population 
sizes, ranging from cities with ~1 million people to larger cities 
and countries with several million individuals. In every figure 
of this section, we use CF = 0.40, δ = 0.10, tA = 10, tM = 15 
and tS = 20 to generate models from I = 0.30 to I = 0.90. Other 
input parameters and probabilities are chosen according to each 
simulation (location) and are shown in Table 1.
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Figure 2: Effect of varying the parameters S and I on the 
epidemic dynamics in a simulated population. Left panel: 
Impact of different values of S on the cumulative number 
of infections over time, assuming no isolation (I = 0). Lower 
values of S result in slower outbreak progression with a longer 
duration, while higher values of S lead to faster outbreaks that 
reach saturation quickly. This illustrates how S governs the 
slope of the infection probability curve and the overall timescale 
of the epidemic. Right panel: Effect of varying the isolation 
parameter I (with fixed S = 10−5) on the time evolution of key 
epidemiological variables: upper and lower estimates of total 
infections ( ( )upp

IN t and ( )low
IN t ), severe cases, and deaths. Higher 

isolation levels significantly reduce the peak number of cases, 
severe infections, and deaths, demonstrating the critical role of 
isolation in mitigating outbreak severity. These results validate 
the model’s ability to capture a broad spectrum of outbreak 
scenarios, from uncontrolled to highly mitigated epidemics.

Table 1:	Summary of the input parameters for each city/
country. Countries are marked with a *.

Place (pop. [106]) S PA PM PS PD

Natal, Brazil (0.88) 2 × 10−4 0.70 0.28 0.02 0.17
Curitiba, Brazil (1.93) 2 × 10−4 0.70 0.29 0.01 0.17
Fortaleza, Brazil 
(2.64) 4 × 10−4 0.70 0.28 0.02 0.20

Manaus, Brazil (2.78) 4 × 10−4 0.68 0.31 0.01 0.25
Rio de Janeiro, Brazil 
(6.72) 1 × 10−3 0.70 0.28 0.02 0.17

New York, USA (8.34) 2 × 10−3 0.70 0.28 0.02 0.18
Mexico City, Mexico 
(8.92) 4 × 10−4 0.70 0.28 0.02 0.15

São Paulo, Brazil 
(12.25) 9 × 10−5 0.70 0.28 0.02 0.16

Spain* (47.43) 1 × 10−2 0.67 0.31 0.02 0.17
South Korea* (51.64) 6 × 10−3 0.70 0.28 0.02 0.14
Italy* (60.36) 1 × 10−3 0.68 0.30 0.02 0.18

Table notes: Locations marked with a * refers to countries. 
The parameter S defines the function PI(t) (Eq 1). The other 
parameters represent the probability of asymptomatic (PA), 
mild (PM), and severe cases (PS). The parameter PD defines the 

probability of death after a severe case. These values were chosen 
to properly fit the observed (real) death curves of each country/
city. These values are also corroborated by several works in the 
literature. See text.

Figure 3, left side, displays the models for the city of São Paulo, 
Brazil (pop. 12,252,000) which accumulated 247,730 official 
cases and 11,030 deaths in the first 181 days after the first 
officially reported case in February 26th, 2020. On the right side, 
we show the results for New York City, USA (pop. 8,336,817) 
which reached 247,613 cases and 19,196 deaths 228 days after 
the first reported case in February 29th, 2020. The official data for 
cases and deaths (red continuous curves) for both cities are from 
official government sources [48,49]. Figures 3(a), (b), (c), (d) 
show the fits for the upper and lower limit models to the official 
cases for each city. All fits were adjusted by multiplying the official 
data (CO) by underestimation factors upp

CU and low
CU  (indicated in 

the plots) thus correcting for the missing/undiagnosed cases, as 
discussed in the probabilistic model section. The main result is 
that São Paulo has its official cases underestimated by factors 
ranging from low

CU  = 4.39 (lower limit) to and upp
CU  = 15.69 (upper 

limit). In other words,São Paulo had, according to the model, 
at least 4.39 times more cases than officially reported. For New 
York, we find underestimation factors ranging low

CU  = = 6.12 to 
upp
CU  = 21.87, meaning that New York had at least 6.12 times 

more cases than officially reported. Figures 3(e), (f) show the 
evolution of severe cases for both cities. We find that for São 
Paulo, the severe cases reach a maximum of 8,291 individuals 
106 days after the first reported case (I = 0.70 model curve). For 
New York, we find that severe cases reach a maximum of 41,291 
such cases 32 days after the first reported case (I = 0.50 model 
curve). The official data for severe cases was not available and is 
thus not shown. The time evolution of deaths is shown in Figures 
3(g), (h). We use the official deaths fit corresponding to I = 0.70 
(São Paulo) and I = 0.50 (New York) to adjust both the upper and 
lower limit models to the official cases.

Figure 3: Model fitting to official data for New York City 
(left panels) and São Paulo (right panels). Top panels: Fit of 
cumulative deaths over time. Bottom panels: Fit of cumulative 
cases, comparing the official reported cases to the model’s 
upper ( ( )upp

IN t) and lower ( ( )low
IN t) estimates, which account for 

underreporting. The shaded regions represent the gap between 
the official reported cases and the estimated real number of 
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infections. The model accurately reproduces the dynamics 
of both deaths and cumulative cases, revealing substantial 
underreporting in both locations.

Another example is shown in Figure 4 for Italy (pop. 60,360,000) 
and Spain (pop. 47,431,256). The official data for these countries 
were obtained from official government sources [50,51]. Italy 
reached 298,200 cases and 35,710 deaths 219 days after the first 
reported case on February 15th, 2020. The time evolution for the 
upper and lower limit cases for Italy is shown in Figures 4(a), (c). 
We find low

CU  = 10.13 and upp
CU  = 33.79, meaning that Italy had at 

least 10.13 times more cases than officially reported. Figure 4(e) 
shows that severe cases in Italy reached a maximum of 129,481 
individuals 41 days after the first reported case (I = 0.70 curve). 
The time evolution of deaths in Italy is shown in figure 4(g). 
Note that we use the official death’s best fit corresponding to a 
line above the I = 0.90 model curve to adjust both the upper and 
lower limit models shown in figures 4(a), (b). We further assume 
that this line also fits the severe cases in figure 4(e). According 
to official data (51), Spain reached 543,400 cases and 29,630 
deaths 208 days after the first reported case in February 15th, 
2020. The time evolution for both upper and lower limit cases 
is shown in figures 4(b), (d) and we find low

CU  = 9.22 and upp
CU  = 

29.77, meaning that Spain had at least 9.22 times more cases 
than officially reported. Figure 4(f) shows that severe cases in 
Spain reached a maximum of 50,760 such cases 40 days after the 
first reported case (I = 0.70 curve). The time evolution of deaths 
is shown in figure 4(h) and a model curve between I = 0.70 and 
I = 0.90 is the best fit, which was also used to adjust both upper 
and lower limit models in figures 4(b), (d).

The same approach described above was applied to other 
cities and countries, and the results are summarized in Table 2. 
In figures 3 and 4 we chose to present the accumulated cases 
and deaths, but our models also predict the daily occurrences 

of cases, deceased, recovered and those in critical conditions. 
To further illustrate our results, we show in figure 5 the daily 
evolution of deceased individuals for SPAIN in the first 200 
days of the pandemic episode, with real daily cases (red curve) 
displayed over several model curves (gray curves). This figure 
demonstrates the model’s ability to predict shifts in the behavior 
of the pandemic episode, since it shows how different isolation 
scenarios better fit the data in different time periods. In the next 
section, we will further discuss the fitting criteria and calculate 
the χ2 of the fits.

Figure 4: Probabilistic model fitting results to real COVID-19 
cases for two European countries. Fit of the probabilistic 
model to official COVID-19 death data for Italy (left panels) 
and Spain (right panels). The model captures the cumulative 
evolution of infections, severe cases, and deaths. Confidence 
bounds are included to reflect uncertainties due to undetected 
cases. The model demonstrates robustness across countries with 
different demographics and healthcare infrastructures.

Table 2: Summary of results for several cities and countries*
Place (pop. [106]) Cases [103] Deaths [103] low

CU upp
CU CFR(%) CCFRupp(%) CCFRlow(%)

Natal, Brazil (0.88) 26.89 1.09 3.37 12.00 4.05 1.20 0.34
Curitiba, Brazil (1.93) 40.91 1.42 3.15 10.82 3.47 1.10 0.32
Fortaleza, Brazil (2.64) 49.21 3.87 6.61 23.69 7.86 1.19 0.33
Manaus, Brazil (2.78) 50.02 2.51 4.71 15.68 5.02 1.07 0.32
Rio de Janeiro, Brazil (6.72) 151.89 14.02 7.62 27.23 9.23 1.21 0.34
New York, USA (8.34) 247.61 19.20 6.12 21.87 7.75 1.27 0.35
Mexico City, Mexico (8.92) 107.60 8.85 7.63 27.21 8.22 1.08 0.30
São Paulo, Brazil (12.25) 247.73 11.03 4.39 15.69 4.45 1.01 0.28
Spain* (47.43) 281.00 28.40 9.22 29.77 10.11 1.10 0.34
South Korea* (51.64) 14.63 0.31 1.92 6.88 2.12 1.10 0.31
Italy* (60.36) 298.20 35.71 10.13 33.79 11.98 1.18 0.35

6.75 ± 3.11 1.14 ± 0.07 0.33 ± 0.02

We use the number of cases and deaths to calculate the case fatality rates. The model fits yield low
CU  and, upp

CU  which are then used to 
calculate both CCFRupp and CCFRlow. Note that although CFR’s vary for each location, the averaged CCFRupp and CCFRlow standard 
deviations are comparatively smaller.
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Figure 5: Probabilistic model fitting results to real daily 
cases for SPAIN. Daily reported deaths in Spain (continuous 
red curves) compared to model predictions assuming changes 
in population isolation levels I (green labels). The fit illustrates 
how different effective isolation factors I are needed to describe 
the evolution of the outbreak over time. The transitions between 
isolation levels reflect real-world social and policy dynamics 
during the pandemic.

Statistical Analysis
In order to analyze the goodness of fit of our models, we 
performed a χ2 test comparing the observed deceased cases 
and the corresponding isolation model curves (table 3). We 
chose to use the observed deceased curve since it is less prone 
to uncertainties compared to the infection cases that have a 
demonstrated high level of sub-notifications. Table 3 displays 
results for Spain and São Paulo in multiple intervals (days). 
In figure 6 we show the results for Spain and the models that 
better fit the observed deceased curve in the time interval from 
55 to 150 days after the start of the pandemic episode. Multiple 
models (table 3) better adjust the data, and the observed curve 
transitions through different isolation curves as time evolves. 
There are time intervals when the observed cases coincide with 
a specific model curve, considering a 0.95 confidence level. The 
same approach was applied to all other locations considered in 
this study, and the same overall behavior was observed. The 
model is able to give multiple isolation model curves and the 
observed data transitions among model curves as time evolves 
and local characteristics of the pandemic change, e.g., isolation, 
population dynamics, medical response, infection rate.

Table 3: Statistical Analysis (chi-square test) For Selected 
Locations

Place (Pop. [106]) Days Isolation 
Curve (%) χ2 χ2 (α = 

0.05)
Spain (47.43) 60-70 81.00 0.254 3.940

71-85 81.30 0.682 6.571
86-94 81.90 0.486 2.733
110-
171

82.45 2.276 43.188

São Paulo, BR 
(12.25)

30-41 80.00 2.138 4.575

42-50 75.00 7.322 2.733
51-60 73.00 5.298 3.325
74-84 65.00 10.043 3.940
87-128 64.00 34.036 26.509
137-
150

65.00 7.507 5.892

160-
181

67.00 14.875 11.591

Comparison Between Probabilistic and SEIR Correction 
Methods
To validate the effectiveness of the probabilistic correction 
method, we compared it against a standard SEIR-type 
epidemiological model incorporating mortality (Figure 7). We 
generated synthetic epidemic data and calculated corrected 
case fatality rates (CFRs) using both approaches. In Panel 1, 
we present the “Synthetic Epidemic Data: Cases and Deaths.” 
The blue line shows the simulated daily cases (style to this 
article). The red line shows the simulated daily deaths using your 
probabilistic model. And the dashed purple line shows the daily 
deaths predicted by a classical SEIR model modified to include 
deaths. Both methods reproduce the expected epidemic pattern.

Figure 6: Model vs. real cases dynamics Chi-squared (χ2) 
analysis evaluating the goodness-of-fit of the probabilistic 
model to real data across different time periods. Lower χ2 
values indicate better agreement between model predictions and 
observed cumulative deaths, validating the model’s flexibility in 
adapting to changing outbreak dynamics.

In Panel 2 we have the “Comparison of CFR Corrections”, 
where the dashed black line shows the observed CFR (without 
correction) – it underestimates the true CFR at the beginning. 
In the green line, we show the CFR corrected using your 
probabilistic model – it converges quickly and smoothly to 
the true value (0.7%). And finally, the purple line shows the 
CFR corrected using the SEIR model – it converges too, but 
with more initial fluctuations. The dotted gray line shows the 
True CFR (0.7%).The corrected CFR curves obtained from 
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the probabilistic method closely matched those from the SEIR 
model, with a mean absolute error below 0.002, showing that 
your simple model is almost as accurate as SEIR, with much 
less complexity.

Figure 7: Comparison between the probabilistic correction 
method and a SEIR-type epidemiological model with mortality. 
Top panel: Simulated daily cases (blue solid line), daily deaths 
generated by the probabilistic model (red solid line), and daily 
deaths predicted by the SEIR model (purple dashed line). 
Bottom panel: Observed CFR without correction (black dashed 
line), corrected CFR using the probabilistic method (green 
solid line), and corrected CFR using the SEIR model (purple 
solid line). The true CFR is indicated by a dotted gray line. The 
probabilistic method shows a strong agreement with the SEIR 
model correction (mean absolute error MAE < 0.002), while 
maintaining greater computational simplicity and requiring 
fewer assumptions.

This result highlights that our method achieves comparable 
correction performance to more complex compartmental models, 
while maintaining a simpler structure, fewer assumptions, and 
greater computational efficiency.

Discussion
Exploring the Parameter Space We evaluated the model’s 
capacity to reproduce a wide range of outbreak scenarios by 
exploring its parameter space, specifically varying S and I. The 
parameter S controls the outbreak dynamics, governing the pace 
and duration of the infection. As illustrated in Figure 2 (left), 
simulations with I = 0 and varying S values (1.0 × 10−7 to 1.0 
× 10−2) demonstrate the model’s flexibility in replicating both 
short-lived and long-lasting outbreaks.

The isolation parameter I captures how the fraction of isolated 
individuals affects the epidemic’s progression, as shown in 
Figure. 2 (right), where we plot the time evolution of ( )upp

IN t and 
( )low

IN t, severe cases, and deaths for multiple values of I (with S 
= 10−5). While the infection probability curve is a simplified 
construct and may not represent the full complexity of real-world 
dynamics, our results demonstrate that it accurately captures the 
time evolution of cases under various scenarios.

It is essential to emphasize that I should not be interpreted literally, 
as isolation levels fluctuate dynamically due to behavioral 
changes, policy shifts, and population mobility. Furthermore, 

the model assumes a closed population without accounting for 
daily inflows and outflows common in urban centers. These 
factors introduce oscillations in real-world isolation levels that 
are beyond the scope of this simplified model.

Fitting Real-World Data
Figures 3 and 4 display model fits for two major metropolitan 
areas and two medium-sized countries. Across all these 
regions, the S parameter ranges from 9 × 10−5 to 1 × 10−2, while 
death probabilities range from 14% to 22%. Despite differing 
population sizes and dynamics, the model consistently produces 
high-quality fits with modest adjustments in S and mortality 
probabilities.

It is important to stress that S it is not arbitrarily chosen, but is 
directly informed by the shape and timing of the official case and 
death curves. The model accurately reproduces the plateauing 
behavior and overall epidemic curve dynamics, suggesting a 
universal property of the disease across diverse populations. 
This adaptability, despite ignoring complex social dynamics, is 
further highlighted by the transitions between isolation levels, as 
seen in Figure. 6 and summarized in Table 3.

The most immediate and impactful output from the model is the 
set of underreporting correction factors  upp

CU  and, low
CU  (Table 2). 

For example, in New York, with 247,730 official cases after 228 
days, the model yields upp

CU  = 21.87 and low
CU  = 6.12, indicating 

that the true number of cases is likely between 6.12 and 21.87 
times higher than reported. Similarly, Italy’s official count 
of 298,200 cases (after 219 days) corresponds to correction 
factors of upp

CU  = 33.79 and low
CU  = 10.13. These findings highlight 

widespread underreporting, attributable to limited testing 
capacity, overwhelmed health systems, and other factors [52,53].

Severe Cases and Healthcare Demand
Our model also estimates the number of severe cases-those 
requiring hospitalization or intensive care. These projections 
align closely with observed stresses on healthcare systems. For 
Spain (Figure. 4), severe cases peaked at approximately 50,000 
under the I = 0.70 scenario, explaining the early collapse of the 
healthcare infrastructure. Assuming even a conservative ICU 
admission rate of 2%, this translates to 1,000 ICU beds required 
simultaneously-challenging for a country with only 4,700 
multipurpose ICU beds as of 2013 [54-58].

Similarly, in New York City, the model predicted 41,291 severe 
cases by day 32 after the first reported case, matching the 
official hospitalization number of 41,516 on day 52 [59]. This 
level of precision underscores the model’s utility for forecasting 
healthcare demand, although our primary focus was on correcting 
fatality rates rather than detailed hospitalization dynamics.

Correcting the Case Fatality Rate (CFR)
Using the correction factors Ulow and Uupp, we computed 
adjusted case fatality rates (CCFR) as summarized in Table 
2. The corrected CCFR ranges between 0.33% ± 0.02% and 
1.14% ± 0.07%, exhibiting remarkably low variance across 
different locations. This is in stark contrast to the uncorrected 
CFRs, which vary widely (average 6.75% ± 3.11%).
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This convergence in corrected fatality rates suggests that, despite 
varying levels of underreporting and demographic differences, 
the intrinsic lethality of COVID-19 is consistent across regions. 
Our findings align closely with independent seroprevalence 
studies reinforcing the validity of our correction methodology 
[60-62].

Accounting for Data Uncertainties
While the probabilistic model mitigates the effects of 
underreporting, its accuracy is constrained by the quality of 
official data. Factors such as inconsistent death certification, 
underdiagnosis, and reporting delays, particularly in resource-
limited settings, introduce uncertainties [63,64].

Correction factors derived from the model are contingent on 
the reliability of death data, which, although more stable than 
case counts, still carries inherent biases. Our estimates  should 
therefore be interpreted within the context of these limitations.

Model Assumptions and Comparisons
A critical assumption is population homogeneity, which simplifies 
infection dynamics by ignoring age structure, comorbidities, 
and heterogeneous contact networks. Additionally, isolation 
is modeled as constant over fixed intervals, ignoring dynamic 
shifts driven by policy or behavior. Despite these simplifications, 
the model effectively captures macroscopic pandemic dynamics 
during the early outbreak stages, when interventions were 
relatively stable. Future enhancements could include age-
structured compartments and time-varying isolation to improve 
long-term accuracy.

Comparative analysis (Table 4) demonstrates that our method 
offers accuracy comparable to SEIR-type models while requiring 
fewer parameters and significantly lower computational cost. 
This makes it particularly suitable for real-time monitoring in 
resource-constrained settings.

Limitations and Future Directions
While the proposed probabilistic framework successfully 
captures the macroscopic dynamics of the COVID-19 pandemic 
and provides reliable corrections to the case fatality rates, it is 
important to acknowledge the inherent limitations of the model. 
A key simplification lies in the assumption of a homogeneous 
population. The model does not incorporate demographic 
heterogeneity, such as age structure, comorbidities, or socio-
economic factors, all of which are known to significantly 
influence both disease transmission and clinical outcomes. 
Similarly, the model does not account for spatial dynamics or 
mobility patterns, ignoring population flux between cities or 
regions, which can impact local outbreak trajectories.

Another limitation concerns the treatment of isolation (I) as 
a static parameter within selected time windows. In reality, 
isolation measures and public adherence fluctuate continuously 
due to policy changes, pandemic fatigue, and socio-political 
factors. Our approach approximates these dynamics by allowing 
the model to transition between different isolation levels, but it 
does not explicitly model time-varying isolation as a dynamic 
function.

Additionally, the model does not explicitly include vaccination 
effects, reinfection dynamics, or the emergence of new variants, 
as its design is primarily focused on the early phases of the 
pandemic when such factors were either absent or negligible. 
However, the framework is flexible and could be extended to 
incorporate these elements in future developments.

Despite these simplifications, the model has proven highly 
effective for estimating true infection burdens and corrected 
fatality rates, particularly under conditions of data scarcity and 
underreporting. Future work may focus on extending the model to 
include age-stratified compartments, spatially explicit dynamics 
through network or metapopulation models, and time-varying 
behavioral responses. Furthermore, integrating vaccination 
dynamics, waning immunity, and variant-specific transmission 
parameters would enhance the model’s applicability to later 
stages of the COVID-19 pandemic and to future outbreaks.

Table 4: Comparison between the proposed probabilistic 
correction method and SEIRtype delay models for CFR 
estimation.

Aspect
Proposed 

Probabilistic 
Method

SEIR-type Models 
with Delay 
Adjustment

Modeling 
Structure

Direct probabilistic 
convolution 
between cases 
and deaths using 
empirical delay 
distributions

Compartmental 
system (Susceptible 
Exposed Infectious 
RecoveredDead)	
modeled	 with ODEs 
including delay terms

Data 
Requirements

Publicly available 
case and death 
time series

Detailed clinical 
parameters 
(transmission rates, 
recovery rates, 
incubation period, 
mortality)

Complexity Low:	 no ODE 
integration or 
parameter fitting 
required

High: requires solving
differential equations 
and calibrating 
multiple parameters

Sensitivity to 
Data
Noise

Low: convolution 
smooths 
fluctuations 
naturally

High: model fitting 
can be unstable with 
incomplete or noisy 
data

Computational 
Cost

Minimal Moderate to high

Interpretability High: directly 
relates observed 
data to corrected 
CFR values

Moderate: requires 
interpretation of latent 
compartments and 
model assumptions

Applicability	
to Emerging	
Outbreaks

Immediate	
application
with minimal prior 
information

Requires prior 
knowledge
and assumptions, 
which may be 
unavailable in early 
outbreaks
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Finally, coupling this probabilistic framework with real-time 
mobility data or integrating it into agent-based models could 
provide a more granular understanding of disease spread, 
particularly in heterogeneous and highly connected populations. 
These directions represent promising avenues for improving the 
robustness and versatility of the proposed methodology.

Conclusions
Our probabilistic framework successfully models the early 
dynamics of the COVID-19 pandemic across regions of varying 
population sizes. It demonstrates how isolation measures impact 
disease spread and provides robust estimates of true infection 
counts, revealing that real case numbers are substantially higher 
than reported in official statistics.

A key outcome is the correction of case fatality rates using 
upper and lower bounds for underreporting. Despite substantial 
variation in raw case and death data, the corrected case fatality 
rates converge to a narrow and consistent range between 0.33% 
± 0.02% and 1.14% ± 0.07%. This range aligns with independent 
seroprevalence studies and suggests a universal characteristic of 
COVID-19 lethality when adjusting for underreporting.

The model also accurately forecasts the demand for severe case 
management and ICU resources, correlating with observed 
hospital burdens during peak epidemic phases. In summary, this 
probabilistic framework provides a computationally efficient, 
conceptually transparent, and robust tool for estimating true 
infection burdens and correcting fatality rates during emerging 
outbreaks. It serves as a valuable complement to more complex 
epidemiological models, particularly when detailed data are 
lacking or unreliable. While designed for the COVID-19 
pandemic, the methodology is broadly applicable to future 
epidemics characterized by significant underreporting.

Supporting Information
S1 File. Covid-19 Code in FORTRAN77. We provide the code 
used to model the data. The code is well commented, and the 
user might change parameters and probabilities to run their own 
simulations. We ask that works using the code make a reference 
to this article.

S2 File. Synthetic Data Simulation and Comparison with SEIR 
Model in PYTHON To validate the proposed probabilistic 
correction method against traditional SEIR-type models, we 
developed a Python script that simulates synthetic epidemic 
data.

Supplementary Material
Synthetic Data Simulation and CFR Correction Comparison. 
The following Python script was used to simulate synthetic 
epidemic data and to compare our probabilistic CFR correction 
method against a SEIR-type model with mortality [see Figure.7]. 
The code generates daily cases following a Gaussian-like 
epidemic curve and simulates daily deaths using (i) a convolution 
with a delay distribution (probabilistic model) and (ii) an SEIR 
model with an added mortality compartment. Corrected case 
fatality rates (CFRs) from both approaches are compared against 
the true CFR.
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Data Availability
The data and codes that support the findings of this study are 
available in the supplementary material. Additional data and 
scripts can be made available from the corresponding author 
upon reasonable request.
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